We present a new independent scheme of SO(3) group transformations suitable for the N particle system, composed of N − 1 and 1 particle subsystems, where N − 1 particles have their own intrinsic clusterization. The simple expressions for corresponding four-particle harmonic-oscillator transformation brackets are presented, as well as their simplifications for the special values of mass ratio parameters d = 0, d → ∞ and d 1 = 0, d 1 → ∞.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A new procedure for large-scale calculations of the coefficients of fractional parentage (CFP) for many-particle systems is presented. The approach is based on a simple enumeration scheme for antisymmetric N particle states, and we suggest an efficient method for constructing the eigenvectors of two-particle transposition operator $$P_{N_1 ,N}$$ in a subspace where N 1 and N 2 = N − N 1 nucleons basis states are already antisymmetrized. The main result of this paper is that according to permutation operators $$P_{N_1 ,N}$$ eigenvalues we can distinguish totally asymmetrical N particle states from the other states with lower degree of asymmetry.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.