The main objective of this paper is to investigate the nonparametric estimation of the conditional density of a scalar response variable Y, given the explanatory variable X taking value in a Hilbert space when the sample of observations is considered as an independent random variables with identical distribution (i.i.d) and are linked with a single functional index structure. First of all, a kernel type estimator for the conditional density function (cond-df) is introduced. Afterwards, the asymptotic properties are stated for a conditional density estimator when the observations are linked with a singleindex structure from which one derives a central limit theorem (CLT) of the conditional density estimator to show the asymptotic normality of the kernel estimate of this model. As an application the conditional mode in functional single-index model is presented, and the asymptotic (1 – ) confidence interval of the conditional mode function is given for 0 < < 1. A simulation study is also presented to illustrate the validity and finite sample performance of the considered estimator. Finally, the estimation of the functional index via the pseudo-maximum likelihood method is discussed.
PL
Celem niniejszego artykułu jest zbadanie nieparametrycznej estymacji warunkowej gęstości skalarnej zmiennej zależnej Y, przy założeniu, że zmienna objaśniająca X przyjmuje wartość w przestrzeni Hilberta, gdy próbka obserwacji jest traktowana jako niezależne zmienne losowe o identycznym rozkładzie i są one połączone jedną funkcjonalną strukturą indeksu. Przede wszystkim wprowadzono estymator typu jądrowego dla warunkowej funkcji gęstości (cond-df). Następnie określono asymptotyczne właściwości warunkowego estymatora gęstości, gdy obserwacje są połączone ze strukturą pojedynczego indeksu, i wyprowadzano centralne twierdzenie graniczne (CLT) warunkowego estymatora gęstości w celu zaprezentowania asymptotycznej normalności estymacji jądrowej tego modelu. W aplikacji przedstawiono dominantę warunkową w funkcjonalnym modelu z pojedynczym indeksem, a także asymptotyczny (1-) przedział ufności funkcji dominanty warunkowej dla 0 < < 1. Na koniec omówiono estymację indeksu funkcjonalnego metodą pseudomaksymalnej wiarygodności.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.