Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Constraint models for complex state transitions
100%
EN
Constraint-based scheduling is an approach for solving real-life scheduling problems by combining the generality of AI techniques with the efficiency of OR techniques. Basically, it describes a scheduling problem as a constraint satisfaction problem and then uses constraint satisfaction techniques to find a solution. In this paper we study three constraint models describing complex state transitions that are going beyond the existing models of resources (machines) used in scheduling. These models can naturally handle any setup/changeover/transition scheme as well as special counter constraints imposed on the sequence of activities. The proposed models have been implemented and tested in the commercial scheduling engine of Visopt ShopFloor system.
EN
Logic programming provides a declarative framework for modeling and solving many combinatorial problems. Until recently, it was not competitive with state-of-the-art planning techniques partly due to search capabilities limited to backtracking. Recent development brought more advanced search techniques to logic programming such as tabling that simplifies implementation and exploitation of more sophisticated search algorithms. Together with rich modeling capabilities this progress brings tabled logic programing on a par with current best planners. This paper describes the planner module of the tabled logic programming language Picat, its modeling capabilities, and core search procedures behind the planner. The major contribution is an experimental comparison of the influence of various modeling techniques, namely factored vs. structured representations of states, control knowledge, and heuristics on the performance of two search procedures – iterative deepening and branch and bound-behind the planner. The paper also compares the Picat planner with winning automated planners both domain dependent and domain independent to demonstrate that the presented techniques are competitive with state-of-the-art.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.