Przedstawiono metodę analizy ilości związków toksycznych emitowanych do atmosfery przez pomocniczy kocioł opalany podczas eksploatacji statku w różnych stanach obciążenia kotła.
EN
The paper presents a suggested method of measuring toxic compounds emitted to atmosphere by auxiliary oil-fired boilers in different states of load.
Regulations concerning the limitation of harmful compounds emission contained in exhaust gases become more restrictive. This is observed within regulations regarding land-based installations and also rules applied to ships of global trade fleet. Other restrictions of vessels emissions, enclosed in rules set out in Annex IV of Marpol Convention 73/78 are gradually implemented and establish emission limits for ship engines. The boiler delivers the heat energy required for fuel preparation for main and auxiliary engines - and also by consuming fuel in its combustion chamber becomes and emitter. This article describes the anticipated methodology of the boiler steam efficiency, depending on the main engine installed. Additionally, fuel oil consumption analysis in various steam capacity range performed using the histograms. The histograms were produced on the basis of service reports of similar units, and combining fuel oil consumption with exhaust emission during operation. A vessel engine report includes monthly machinery abstract and is compiled for a ship-owner on the basis of the log book records. Quantified exhaust emission from auxiliary oil fired boiler contributes determination the overall emissions from a ship.
In 2008 the International Maritime Organization - IMO decided to strengthen the requirements for new ships from 2011 - Tier II. However, for Emission Control Areas (ECAs), such as the Baltic Sea, stringent rules will apply from 1 January 2016 for new ships - Tier III. The new standards introduce restrictions on exhaust emissions from diesel engines - NOx and SOx. The paper presents proposal of new design an existing exhaust gas system of experimental marine diesel engine, which is situated in the Laboratory of Maritime Academy in Szczecin. The conception is due to meet to new environmental regulations. Arrangements of exhaust line, CFD model of the SCR reference plant, CFD model - inlet and outlet boundary conditions, pressure loss model for the catalytic elements, simulation results - streamlines, velocity distribution, reaction progress distribution ate presented in the paper as well design description of system of laboratory- 4-stroke and turbocharged engine. . The means of the reduction systems are based on conventional marine exhaust gas installation that includes noise silencer and soot-catcher. The after-treatment methods do not introduce significant changes in engine arrangement and operation. A new gas purifying system should be installed in the engine exhaust gas system.
The control of nox emissions from marine engines proves a challenge. Diesel engine manufacturers have been investigating a variety of methods with aim of reducing nox emissions. Currently, the plasma technology is undergoing rapid development in application to diesel engine exhausts. A combination of non-thermal plasma with catalysts can be referred to plasma assisted catalysts technology. This paper briefly describes research efforts aimed at non-thermal plasma reactor development for ship use with primary focus on NO oxidation condition. The part scale plasma reactor models have been designed and manufactured for the purpose of this trial. Exhaust emission plasma after-treatment module was fitted on exhaust outlet path of the marine test bed engine for fractional exhaust gas stream examination. Subsequently, the comprehensive series of trials were performed to assess the exhaust flow properties of the main exhaust channel and plasma reactor by-pass duct. Emission measurements were carried out on engine at steady-state operation. The NO reaction activity was a major task of the experiment and throughout the measurements, the engine outlet nox levels (NO and NO2) were monitored with simultaneous NO, NO2, N2O level recording after NTP reactor.
In general, the performance of a ship in service is different from that obtained on shipyard sea trial. Apart from any differences due to loading conditions, and for which due correction should be made, these differences arise principally from the weather, fouling and surface deterioration of the hull and propeller. The influence of the weather, both in terms of wind and sea conditions, is an extremely important factor in ship performance analysis. Consequently, the weather effects needs to be taken into account if a realistic evaluation is to be made. The primary role of the ship service analysis is a standard of performance data, under varying operational and environmental conditions. The resulting information, derived from this data, becomes the basis for operational and chartering decision. In addition, the part for the data records is to enable the analysis of trends of either the hull or machinery, from which the identification of potential failure scenarios and maintenance decisions can be derived. The traditional method of data collection is the deck and engine room log records, and this is the most commonly used method today. In terms of data processing and capabilities, this method of data collection is far from ultimate, since involves significant data distortion risk. Instrumentation errors are always a potential source of concern in performance analysis methods. Such errors are generally in the form of instrument drift or gross distortion of the reading. However, these can generally be detected by the use of trend analysis techniques. The procedure for the evaluation of the ship's service performance, that relies on proven methods of main propulsion engine service data analysis used and applied for container vessel - small feeder. The vessel is equipped with indirect main propulsion, driven by means of modern medium speed engine. The different approach demonstrated to achieve the reliable and accurate main engine performance. The difference in developed engine power has been found, that corresponds well to registered sea trial results and engine retrofitting reports done, in order to limit the effective power.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.