Lithium manganese oxide thin films were deposited on sodalime glass substrates by metal organic chemical vapour deposition (MOCVD) technique. The films were prepared by pyrolysis of lithium manganese acetylacetonate precursor at a temperature of 420 degrees C with a flow rate of 2.5 dm3/min for two-hour deposition period. Rutherford backscattering spectroscopy (RBS), UV-Vis spectrophotometry, X-ray diffraction (XRD) spectroscopy, atomic force microscopy (AFM) and van der Pauw four point probe method were used for characterizations of the film samples. RBS studies of the films revealed fair thickness of 1112.311 (1015 atoms/cm2) and effective stoichiometric relationship of Li0.47Mn0.27O0.26. The films exhibited relatively high transmission (50 % T) in the visible and NIR range, with the bandgap energy of 2.55 eV. Broad and diffused X-ray diffraction patterns obtained showed that the film was amorphous in nature, while microstructural studies indicated dense and uniformly distributed layer across the substrate. Resistivity value of 4.9 Omega.cm was obtained for the thin film. Compared with Mn0.2O0.8thin film, a significant lattice absorption edge shift was observed in the Li0.47Mn0.27O0.26film.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.