Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Linearization of Arbitrary products of classical orthogonal polynomials
100%
EN
A procedure is proposed in order to expand $w=\prod^N_{j=1} P_{i_j}(x)=\sum^M_{k=0} L_ k P_ k(x)$ where $P_i(x)$ belongs to aclassical orthogonal polynomial sequence (Jacobi, Bessel, Laguerre and Hermite) ($M=\sum^N_{j=1} i_j$). We first derive a linear differential equation of order $2^N$ satisfied by w, fromwhich we deduce a recurrence relation in k for the linearizationcoefficients $L_k$. We develop in detail the two cases $[P_i(x)]^N$, $P_ i(x)P_ j(x)P_ k(x)$ and give the recurrencerelation in some cases (N=3,4), when the polynomials $P_i(x)$are monic Hermite orthogonal polynomials.
2
Content available remote Pulse Propagation in a Non-Linear Medium
88%
EN
This paper considers a novel approach to solving the general propagation equation of optical pulses in an arbitrary non-linear medium. Using a suitable change of variable and applying the Adomian decomposition method to the non-linear Schrödinger equation, an analytical solution can be obtained which takes into accountparameters such as attenuation factor, the second order dispersive parameter, the third order dispersive parameter and the non-linear Kerr effect coefficient. By analysing the solution, this paper establishes that this method is suitable for the study of light pulse propagation in a non-linear optical medium.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.