The rigid Moon rotation problem is studied for the relativistic (kinematical) case, in which the geodetic perturbations in the Moon rotation are taken into account. As the result of this research the high-precision Moon Rotation Series MRS2016 in the relativistic approximation was constructed for the first time and the discrepancies between the highprecision numerical and the semi-analytical solutions of the rigid Moon rotation were investigated with respect to the fixed ecliptic of epoch J2000, by the numerical and analytical methods. The residuals between the numerical solution and MRS2016 in the perturbing terms of the physical librations do not exceed 80 mas and 10 arc seconds over 2000 and 6000 years, respectively.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This research is the continuation of our studies of the rigid Earth rotation at a long time intervals (Pashkevich V.V. and Eroshkin G.I., 2005). The main purpose of this investigation is the construction of the new high-precision Rigid Earth Rotation Series 2012 (RERS2012), dynamically adequate to the JPL DE406/LE406 ephemeris (Standish E. M., 1998). The dynamics of the rotational motion of the rigid Earth is studied numerically by using Rodrigues-Hamilton parameters over 2000 and 6000 years. The numerical solution of the rigid Earth rotation is implemented with the quadruple precision of the calculations. The orbital motions of the disturbing celestial bodies are defined by the DE406/LE406 ephemeris. The initial conditions of the numerical integration are taken from SMART97 (Bretagnon P. et al., 1998) and S9000 (Pashkevich V.V. and Eroshkin G.I. 2005). The results of the numerical solutions of the problem are compared with the semi-analytical solutions of the rigid Earth rotation (SMART97 and S9000, respectively) with respect to the fixed ecliptic of epoch J2000. The investigation of these discrepancies is carried out by the least squares and spectral analysis methods for the relativistic (Kinematical) case, in which the geodetic perturbations (the most essential relativistic perturbations) in the Earth rotation are taken into account. As a result, the Rigid Earth Rotation Series (RERS2012) is constructed, which is dynamically adequate to the DE406/LE406 ephemeris over 2000 and 6000 years. The discrepancies between the new numerical solutions and the semi-analytical solutions of MRS2012 do not surpass 12 μas over 2000 year time interval and 2 mas over 6000 year time interval. Thus, the result of the comparison demonstrates a good consistency of RERS2012 series with the DE406/LE406 ephemeris.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this study the relativistic effects (the geodetic precession and the geodetic nutation, which consist of the effect of the geodetic rotation) in the rotation of Mars satellites system for the first time were computed and the improved geodetic rotation of the Solar system bodies were investigated. The most essential terms of the geodetic rotation were computed by the algorithm of Pashkevich (2016), which is applicable to the study of any bodies of the Solar system that have long-time ephemeris. As a result, in the perturbing terms of the physical librations and Euler angles for Mars satellites (Phobos and Deimos) as well as in the perturbing terms of the physical librations for the Moon and Euler angles for major planets, Pluto and the Sun the most significant systematic and periodic terms of the geodetic rotation were calculated. In this research the additional periodic terms of the geodetic rotation for major planets, Pluto and the Moon were calculated.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.