Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The key variables in the development and operation of wind and solar power systems are wind speed and solar radiation. The prediction of solar and wind energy parameters is important to alleviate the effects of power generation fluctuations. Consequently, it is essential to predict renewable energy sources like solar radiation and wind speed precisely. An artificial intelligence-based random forest method is recommended in this paper to estimate wind speed and solar radiation. The number of decision trees in the random forest model is suggested to be optimised using a novel coot algorithm (CA), and the effectiveness of the CA is evaluated to that of the currently used particle swarm optimisation (PSO) method. The best forecasting data are used in this work to develop a dynamic Microgrid (MG) in MATLAB/SIMULINK. A novel binary CA is proposed to control the MG to minimize the cost. The effect of the energy storage system is also investigated during the simulation of the MG.
PL
Kluczowymi zmiennymi w rozwoju i działaniu systemów energii wiatrowej i słonecznej są prędkość wiatru i promieniowanie słoneczne. Prognozowanie parametrów energii słonecznej i wiatrowej jest ważne dla złagodzenia skutków wahań produkcji energii. W związku z tym niezbędne jest precyzyjne przewidywanie źródeł energii odnawialnej, takich jak promieniowanie słoneczne i prędkość wiatru. W tym artykule zaleca się metodę lasów losowych opartą na sztucznej inteligencji w celu oszacowania prędkości wiatru i promieniowania słonecznego. Sugeruje się optymalizację liczby drzew decyzyjnych w modelu losowego lasu przy użyciu nowego algorytmu łyski (CA), a skuteczność CA jest oceniana na podstawie obecnie stosowanej metody optymalizacji roju cząstek (PSO). W tej pracy wykorzystano najlepsze dane prognostyczne do opracowania dynamicznej mikrosieci (MG) w MATLAB/SIMULINK. Proponuje się nowy binarny CA do sterowania MG w celu zminimalizowania kosztów. Wpływ systemu magazynowania energii jest również badany podczas symulacji MG.
EN
Energy efficiency regulations and initiatives have been implemented as part of proactive actions to address the energy crisis that has arisen due to the increasing demand and depletion of resources. A load monitoring system is used to provide real-time data for appropriate feedbacks towards electricity savings. It can also be used to evaluate the effectiveness of the implementation of an energy management scheme. However, monitoring all individual appliances by installing an energy meter for each appliance will incur high installation and maintenance costs. Therefore, this work aims to determine the status of individual appliances from an aggregated measurement using non-intrusive load monitoring (NILM) based on a feed-forward neural network. The establishment of a NILM model has for main processes, including, data acquisition, pre-processing, training and performance evaluation. In the pre-processing, a new approach using threshold is introduced to identify the status of appliances based on their power consumption readings. The performance of the proposed approach is then evaluated and compared with the traditional logistic regression technique in terms of accuracy. The results show that the NILM using a feed-forward neural network outperformed the traditional logistic regression by 5.78%. Moreover, the proposed approach with threshold helped to improve the accuracy further by 19.1% as compared to the same learning algorithm without considering the threshold. Consequently, the overall performance is improved by almost 25% as compared to the logistic regression as presented in the previous work. Hence, it clearly shows that the status of individual appliances can be determined from measurements at the main meter using NILM based on a feed-forward neural network with high accuracy.
PL
Regulacje i inicjatywy dotyczące efektywnosci energetycznej zostały wdrożone w ramach proaktywnych działań mających na celu zaradzenie kryzysowi energetycznemu, który powstał z powodu rosnącego popytu i wyczerpywania się zasobów. System monitorowania obciązenia słuzy do dostarczania danych w czasie rzeczywistym w celu uzyskania odpowiednich informacji zwrotnych dotyczących oszczędnosci energii ´ elektrycznej. Mozna go równie z wykorzystać do oceny skuteczności wdrożenia systemu zarządzania energią. Jednak monitorowanie wszystkich poszczególnych urządzen poprzez zainstalowanie licznika energii dla każdego urządzenia będzie wiązało się z wysokimi kosztami instalacji i konserwacji. Dlatego celem niniejszej pracy jest okreslenie stanu poszczególnych urządzen na podstawie zagregowanego pomiaru przy użyciu nieinwazyjnego monitorowania obciązenia (NILM) w oparciu o sieć neuronową ze sprzężeniem do przodu. Ustanowienie modelu NILM obejmuje główne ˙ procesy, w tym akwizycję danych, wstępne przetwarzanie, szkolenie i ocenę wydajnosci. W przetwarzaniu wstępnym wprowadza się nowe podejscie ´ wykorzystujące próg do identyfikacji stanu urządzen na podstawie ich odczytów zużycia energii. Wydajność proponowanego podejścia jest następnie oceniana i porównywana z tradycyjną techniką regresji logistycznej pod względem dokładnosci. Wyniki pokazują, ze NILM wykorzystujący sieć neuronową ze sprzężeniem do przodu przewyższał tradycyjną regresję logistyczna o 5,78%. Co więcej, zaproponowane podejscie z progiem pomogło jeszcze bardziej poprawic dokładność o 19,1% w porównaniu z tym samym algorytmem uczenia bez uwzględnienia progu. W rezultacie ogólna wydajność jest poprawiona o prawie 25% w porównaniu do regresji logistycznej przedstawionej w poprzedniej pracy. Stąd wyraźnie widać ze stan ˙ poszczególnych urządzeń mozna określić na podstawie pomiarów na głównym liczniku za pomocą NILM w oparciu o sieć neuronową ze sprzężeniem ˙ do przodu z duzą dokładnoscią.
EN
Demand response (DR) refers to programs used in endeavors to reduce overall power consumption, manage consumption peak hour shifting, and reduce demand on service providers or utilities using different methods. This paper proposes a home appliance scheduler suitable for DR applications. In the proposed method, a controller controls thermal and shiftable loads, where thermal loads are empirical models that consider different factors. They produce the load profile of the home in consideration of different input parameters, e.g., setpoints and user tolerance ranges, and various factors, e.g., the room’s physical structure and the external environment. A scheduler uses the controller to implement load shifting using the whale optimization algorithm, particle swarm optimization, and gray wolf optimization (GWO) algorithms for three different occupancy and price schemes. Acceptable results were obtained by applying the models using various outer temperatures and user tolerance ranges. The results also demonstrate cost reduction of 38.59% with GWO for the first occupancy scheme.
PL
Demand Response (DR) oznacza programy do redukcji poboru mocy, doboru czasu pracy, odbiorników energii elektrycznej. W artykule zaproponowano program użycia urządzeń domowych spełniający wymagania DR z uwzględnieniem termicznych warunków pracy. . Zaproponowano algorytmy optymalizacji.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.