Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The Australian Bureau of Meteorology (Bureau) issues operational tropical cyclone (TC) seasonal forecasts for the Australian region (AR) and the South Pacific Ocean (SPO) and subregions therein. The forecasts are issued in October, ahead of the Southern Hemisphere TC season (November to April). Improvement of operational TC seasonal forecasts can lead to more accurate warnings for coastal communities to prepare for TC hazards. This study investigates the use of support vector regression (SVR) models, exploring new explanatory variables and non-linear relationships between them, the use of model averaging, and lastly the integration of forecast intervals based on a bias-corrected and accelerated non-parametric bootstrap. Hindcasting analyses show that the SVR model outperforms several benchmark methods. Analysis of the generated models shows that the Dipole Mode Index, 5VAR index and the Southern Oscillation Index are the most frequently selected as explanatory variables for TC seasonal forecasting in all regions. The usage of ENSOrelated covariates implies that definitions of regions and subregions may have to be updated to achieve optimal forecasting performance. Overall, the new SVR methodology is an improvement over the current linear discriminant analysis models and has the potential to increase accuracy of TC seasonal forecasts in the AR and SPO.
EN
The Australian Bureau of Meteorology (Bureau) issues operational tropical cyclone (TC) seasonal forecasts for the Australian region (AR) and the South Pacific Ocean (SPO) and subregions therein. The forecasts are issued in October, ahead of the Southern Hemisphere TC season (November to April). Improvement of operational TC seasonal forecasts can lead to more accurate warnings for coastal communities to prepare for TC hazards. This study investigates the use of support vector regression (SVR) models, exploring new explanatory variables and non-linear relationships between them, the use of model averaging, and lastly the integration of forecast intervals based on a bias-corrected and accelerated non-parametric bootstrap. Hindcasting analyses show that the SVR model outperforms several benchmark methods. Analysis of the generated models shows that the Dipole Mode Index, 5VAR index and the Southern Oscillation Index are the most frequently selected as explanatory variables for TC seasonal forecasting in all regions. The usage of ENSOrelated covariates implies that definitions of regions and subregions may have to be updated to achieve optimal forecasting performance. Overall, the new SVR methodology is an improvement over the current linear discriminant analysis models and has the potential to increase accuracy of TC seasonal forecasts in the AR and SPO.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.