Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, a new mechanism for detecting population stagnation based on the analysis of the local improvement of the evaluation function and the infinite impulse response filter is proposed. The purpose of this mechanism is to improve the population stagnation detection capability for various optimization scenarios, and thus to improve multi-population-based algorithms (MPBAs) performance. In addition, various other approaches have been proposed to eliminate stagnation, including approaches aimed at both improving performance and reducing the complexity of the algorithms. The developed methods were tested, among the others, for various migration topologies and various MPBAs, including the MNIA algorithm, which allows the use of many different base algorithms and thus eliminates the need to select the population-based algorithm for a given simulation problem. The simulations were performed for typical benchmark functions and control problems. The obtained results confirm the validity of the developed method.
2
100%
EN
We propose a method for content-based retrieving solar magnetograms. We use the SDO Helioseismic and Magnetic Imager output collected with SunPy PyTorch libraries. We create a mathematical representation of the magnetic field regions of the Sun in the form of a vector. Thanks to this solution we can compare short vectors instead of comparing full-disk images. In order to decrease the retrieval time, we used a fully-connected autoencoder, which reduced the 256-element descriptor to a 32-element semantic hash. The performed experiments and comparisons proved the efficiency of the proposed approach. Our approach has the highest precision value in comparison with other state-of-the-art methods. The presented method can be used not only for solar image retrieval but also for classification tasks.
EN
In real-world approximation problems, precise input data are economically expensive. Therefore, fuzzy methods devoted to uncertain data are in the focus of current research. Consequently, a method based on fuzzy-rough sets for fuzzification of inputs in a rulebased fuzzy system is discussed in this paper. A triangular membership function is applied to describe the nature of imprecision in data. Firstly, triangular fuzzy partitions are introduced to approximate common antecedent fuzzy rule sets. As a consequence of the proposed method, we obtain a structure of a general (non-interval) type-2 fuzzy logic system in which secondary membership functions are cropped triangular. Then, the possibility of applying so-called regular triangular norms is discussed. Finally, an experimental system constructed on precise data, which is then transformed and verified for uncertain data, is provided to demonstrate its basic properties.
EN
Fuzzy logic systems, unlike black-box models, are known as transparent artificial intelligence systems that have explainable rules of reasoning. Type 2 fuzzy systems extend the field of application to tasks that require the introduction of uncertainty in the rules, e.g. for handling corrupted data. Most practical implementations use interval type-2 sets and process interval membership grades. The key role in the design of type-2 interval fuzzy logic systems is played by the type-2 inference defuzzification method. In type-2 systems this generally takes place in two steps: type-reduction first, then standard defuzzification. The only precise type-reduction method is the iterative method known as Karnik-Mendel (KM) algorithm with its enhancement modifications. The known non-iterative methods deliver only an approximation of the boundaries of a type-reduced set and, in special cases, they diminish the profits that result from the use of type-2 fuzzy logic systems. In this paper, we propose a novel type-reduction method based on a smooth approximation of maximum/minimum, and we call this method a smooth type-reduction. Replacing the iterative KM algorithm by the smooth type-reduction, we obtain a structure of an adaptive interval type-2 fuzzy logic which is non-iterative and as close to an approximation of the KM algorithm as we like.
5
88%
EN
Handwritten text recognition systems interpret the scanned script images as text composed of letters. In this paper, efficient offline methods using fuzzy degrees, as well as interval fuzzy degrees of type-2, are proposed to recognize letters beforehand decomposed into strokes. For such strokes, the first stage methods are used to create a set of hypotheses as to whether a group of strokes matches letter or digit patterns. Subsequently, the second-stage methods are employed to select the most promising set of hypotheses with the use of fuzzy degrees. In a primary version of the second-stage system, standard fuzzy memberships are used to measure compatibility between strokes and character patterns. As an extension of the system thus created, interval type-2 fuzzy degrees are employed to perform a selection of hypotheses that fit multiple handwriting typefaces.
EN
The gas turbine is considered to be a very complex piece of machinery because of both its static structure and the dynamic behavior that results from the occurrence of vibration phenomena. It is required to adopt monitoring and diagnostic procedures for the identification and localization of vibration flaws in order to ensure the appropriate operation of large rotating equipment such as gas turbines. This is necessary in order to avoid catastrophic failures and deterioration and to ensure that proper operation occurs. Utilizing an approach that is based on spectrum analysis, the purpose of this study is to provide a model for the monitoring and diagnosis of vibrations in a GE MS3002 gas turbine and its driven centrifugal compressor. This will be done by utilizing the technique. Following that, the collection of vibration measurements for a model of the centrifugal compressor served as a suggestion for an additional method. This method is based on the neuro-fuzzy approach type ANFIS, and it aims to create an equivalent system that is able to make decisions without consulting a human being for the purpose of detecting vibratory defects. In spite of the fact that the compressor that was investigated has flaws, this procedure produced satisfactory results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.