Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
It is important to evaluate the deformation and failure of sandstone in the foundation engineering of coast, river bank and lake shore. While the deformation and failure of sandstone is a comprehensive result of energy release and dissipation, and energy release is the internal reason which leads to global failure of the sandstone. The experimental analysis is conducted on the character of energy revolution of the sandstone specimen by rating loading and unloading, and the catastrophe model is followed in analyzing elastic strain energy accumulation and release in rock deformation and failure. The index based on elastic energy release is proposed to assess the rock brittleness. It is found that increasing water content is to relieve energy release and catastrophe failure of the rock specimen, and weakening the capacity of elastic energy storage. The peak and residual values of elastic energy are raised as the confining pressure increases, and the post-peak released energy decreases progressively. The confining pressure strengthens energy storage and inhibits energy release of the rock specimen, and saturation of rock will weaken this inhibit effect. The brittleness index decreases with increasing confining pressure as the rock specimen transforming from brittle to ductile.
EN
It is important to evaluate the deformation and failure of sandstone in the foundation engineering of coast, river bank and lake shore. While the deformation and failure of sandstone is a comprehensive result of energy release and dissipation, and energy release is the internal reason which leads to global failure of the sandstone. The experimental analysis is conducted on the character of energy revolution of the sandstone specimen by rating loading and unloading, and the catastrophe model is followed in analyzing elastic strain energy accumulation and release in rock deformation and failure. The index based on elastic energy release is proposed to assess the rock brittleness. It is found that increasing water content is to relieve energy release and catastrophe failure of the rock specimen, and weakening the capacity of elastic energy storage. The peak and residual values of elastic energy are raised as the confining pressure increases, and the post-peak released energy decreases progressively. The confining pressure strengthens energy storage and inhibits energy release of the rock specimen, and saturation of rock will weaken this inhibit effect. The brittleness index decreases with increasing confining pressure as the rock specimen transforming from brittle to ductile
EN
Abiotic stresses adversely affect the growth and productivity of plants and give rise to a series of morphological, physiological, biochemical and molecular changes. Molecular studies have shown that a number of genes with various functions are induced by abiotic stress. The RD29 (Responsive to Desiccation) genes RD29A and RD29B are such genes induced by desiccation, cold and high salt stresses. The genes encode hydrophilic proteins and endow plants with tolerance to these stresses. Two cisacting elements, ABRE (ABA-responsive element) and DRE (dehydration-responsive element), are present, albeit in different numbers, in the promoter regions of the RD29 genes. Transcription factors, such as AREBs (ABAresponsive element-binding proteins) and DREBs (DREbinding proteins), regulate the expression of RD29 genes through binding to ABRE and DRE, respectively. Therefore, the expression of RD29 genes can be divided into ABA-independent and ABA-dependent signal transduction pathways. RD29 sequences are used as markers to monitor stress-response pathways in plants. Furthermore, the RD29A promoter has been used widely in genetic engineering to improve plant adaptability to adverse environments. In addition, the chimeric gene consisting of the firefly luciferase (LUC) marker driven by the RD29A promoter is a powerful tool used to study stress signaling pathways and for reverse genetic analyses. In this review, the structures, expression and regulation patterns, and application in genetic engineering of RD29A and RD29B are introduced in detail.
EN
Pyrolysis is potentially an effective treatment of oily sludge for oil recovery, and the addition of a catalyst is expected to affect its pyrolysis behavior. In the present study, Fe/Al-pillared bentonite with various Fe/Al ratios as pyrolysis catalyst is prepared and characterized by XRD, N2 adsorption, and NH3-TPD. The integration of Al and Fe in the bentonite interlayers to form pillared clay is evidenced by increase in the basal spacing. As a result, a critical ratio of Fe/Al exists in the Fe/Al-pillared bentonite catalytic pyrolysis for oil recovery from the sludge. The oil yield increases with respect to increase in Fe/Al ratio of catalysts, then decreases with further increasing of Fe/Al ratio. The optimum oil yield using 2.0 wt% of Fe/Al 0.5-pillared bentonite as catalyst attains to 52.46% compared to 29.23% without catalyst addition in the present study. In addition, the addition of Fe/Al-pillared bentonite catalyst also improves the quality of pyrolysis-produced oil and promotes the formation of CH4. Fe/Al-pillared bentonite provides acid center in the inner surface, which is beneficial to the cracking reaction of oil molecules in pyrolysis process. The present work implies that Fe/Al-pillared bentonite as addictive holds great potential in industrial pyrolysis of oily sludge.
EN
Sucrose non-fermenting1-related protein kinase 2 (SnRK2) plays a key role in abiotic stress signaling in plants. In this study, gene structures, phylogeny, conserved motifs and promoters of NtSnRK2.7 and NtSnRK2.8 in tobacco have been analyzed. Phylogenetic analysis showed that NtSnRK2.7 and NtSnRK2.8 belong to subclass I and subclass III of SnRK2, respectively. They exhibited similar genomic structures, consisting of 9 exons and 8 introns. Subcellular localization showed the presence of NtSnRK2s in the cell membrane, cytoplasm and nucleus. Quantitative real-time PCR was used to analyze the expression patterns of NtSnRK2s in tobacco. NtSnRK2s were constitutively expressed strongly in roots, weakly in stems, and marginally in leaves. Abiotic stress response analyses revealed that NtSnRK2.7 and NtSnRK2.8 were involved in response to various abiotic stresses with different patterns: there was evidence that NtSnRK2.7 participated in abscisic acid-independent signaling pathways, while the transcription of NtSnRK2.8 was induced by abscisic acid treatment; NtSnRK2.7 responded much faster to salt and cold stress. Furthermore, expression of NtSnRK2.8 increased intensely and reached its maximum at 1 h under drought stress indicating that it is sensitive to osmotic stress. Our results suggest that NtSnRK2.7 and NtSnRK2.8 are involved in multiple stress response pathways in distinct ways.
EN
In this paper we present a new low-cost navigation system designed for small size Unmanned Aerial Vehicles (UAVs) based on Vision-Based Navigation (VBN) and other avionics sensors. The main objective of our research was to design a compact, light and relatively inexpensive system capable of providing the Required Navigation Performance (RNP) in all phases of flight of a small UAV, with a special focus on precision approach and landing, where Vision Based Navigation (VBN) techniques can be fully exploited in a multisensor integrated architecture. Various existing techniques for VBN were compared and the Appearance-Based Approach (ABA) was selected for implementation. Feature extraction and optical flow techniques were employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway and body rates. Additionally, we addressed the possible synergies between VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors, as well as the aiding from Aircraft Dynamics Models (ADMs). In particular, by employing these sensors/models, we aimed to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) was developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the UAV platform in real-time. Two different integrated navigation system architectures were implemented. The first used VBN at 20 Hz and GPS at 1 Hz to augment the MEMS-IMU running at 100 Hz. The second mode also included the ADM (computations performed at 100 Hz) to provide augmentation of the attitude channel. Simulation of these two modes was accomplished in a significant portion of the AEROSONDE UAV operational flight envelope and performing a variety of representative manoeuvres (i.e., straight climb, level turning, turning descent and climb, straight descent, etc.). Simulation of the first integrated navigation system architecture (VBN/IMU/GPS) showed that the integrated system can reach position, velocity and attitude accuracies compatible with CAT-II precision approach requirements. Simulation of the second system architecture (VBN/IMU/GPS/ADM) also showed promising results since the achieved attitude accuracy was higher using the ADM/VBS/IMU than using VBS/IMU only. However, due to rapid divergence of the ADM virtual sensor, there was a need for frequent re-initialisation of the ADM data module, which was strongly dependent on the UAV flight dynamics and the specific manoeuvring transitions performed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.