Given a set A ⊂ ℕ let $σ_A(n)$ denote the number of ordered pairs (a,a') ∈ A × A such that a + a' = n. Erdős and Turán conjectured that for any asymptotic basis A of ℕ, $σ_A(n)$ is unbounded. We show that the analogue of the Erdős-Turán conjecture does not hold in the abelian group (ℤₘ,+), namely, for any natural number m, there exists a set A ⊆ ℤₘ such that A + A = ℤₘ and $σ_A(n̅) ≤ 5120$ for all n̅ ∈ ℤₘ.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let $σ_{A}(n) = |{(a,a') ∈ A²: a + a' = n}|$, where n ∈ N and A is a subset of N. Erdős and Turán conjectured that for any basis A of order 2 of N, $σ_{A}(n)$ is unbounded. In 1990, Imre Z. Ruzsa constructed a basis A of order 2 of N for which $σ_{A}(n)$ is bounded in the square mean. In this paper, we show that there exists a positive integer m₀ such that, for any integer m ≥ m₀, we have a set A ⊂ Zₘ such that A + A = Zₘ and $σ_{A}(n̅) ≤ 768$ for all n̅ ∈ Zₘ.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Recently, Miyazaki and Togbé proved that for any fixed odd integer b ≥ 5 with b ≠ 89, the Diophantine equation $b^{x} + 2^{y} = (b+2)^{z}$ has only the solution (x,y,z) = (1,1,1). We give an extension of this result.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a positive integer n, let σ(n) denote the sum of the positive divisors of n. We call n a near-perfect number if σ(n) = 2n + d where d is a proper divisor of n. We show that the only odd near-perfect number with four distinct prime divisors is 3⁴·7²·11²·19².
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.