For a constant k ϵ [0, ∞) a normalized function f, analytic in the unit disk, is said to be k-uniformly convex if Re (1+z f" (z)/f'(z)) > k|zf"(z)/f'(z)| at any point in the unit disk. The class of k-uniformly convex functions is denoted k-UCV (cf. [8]). The function g is said to be k-starlike if g(z) = zf'(z) and f ϵ k-UCV. For analytic function f, where f(z) = z + a2z² + źźź the integral transformation is defined as follows: [wzór]. Generalized neighbourhood is defined as: [wzór]. In this note a problem of stability of the integral transformation of k-uniformly convex and k-starlike functions for TNδ neighbourhoods is investigated.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we define a distance Fibonacci numbers, also for negative integers, which generalize the classical Fibonacci numbers and Padovan numbers, simultaneously. We give different interpretations of these numbers with respect to special partitions and compositions, also in graphs. We show a construction of the sequence of distance Fibonacci numbers using the Pascal’s triangle. Moreover, we give matrix generators of these numbers, for negative integers, too.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.