Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Intra-population variation of 18 cultivated carrot (Daucus carota L. ssp. sativus) populations of diverse origins was evaluated using codominant microsatellite (SSR) markers. Using 27 genomic and EST-derived SSR markers, 253 alleles were identified with a mean 9.4 alleles per marker. Most of the alleles (60.5%) were rare i.e., with the frequency ≤ 0.05 while only 3.95% of alleles occurred with frequency > 0.6. EST-derived SSR markers were less polymorphic than genomic SSR markers. Differences in allele occurrence allowed 16 out of 18 populations to be assigned to either the Western or Asian carrot gene pools with high probability. Populations could be also discriminated due to the presence of private alleles (25.3% of all alleles). Most populations had excess of alleles in the homozygous state indicating their inbreeding, although heterozygous loci were common in F1 hybrids. Genetic diversity was due to allelic variation among plants within populations (62% of total variation) and between populations (38%). Accessions originating from continental Asia and Europe had more allelic variants and higher diversity than those from Japan and USA. Also, allelic richness and variability in landraces was higher than in F1 hybrids and open-pollinated cultivars.
EN
Under some conditions the growth of toxic cyanobacteria must be controlled by treatment with algicidal compounds. Hydrogen peroxide has been proposed as an efficient and relatively safe chemical which can remove cyanobacteria from the environment selectively, without affecting other microorganisms. However, the uncontrolled release of secondary metabolites, including toxins may occur after such a treatment. Our proposal presented in this paper concerns fast biodegradation of microcystin released after cell lysis induced by hydrogen peroxide. The effectiveness of both, Sphingomonas sp. and heterologously expressed MlrA enzyme, in the removal of the toxin from Microcystis aeruginosa culture was investigated. The results indicate that neither Sphingomonas cells nor MlrA are affected by hydrogen peroxide at the concentrations which stop the growth of cyanobacteria. A several-fold reduction in microcystin levels was documented in the presence of these agents with biodegradation ability. Our results provide evidence that such a combined treatment of water reservoirs dominated by microcystin-producing cyanobacteria may be a promising alternative which allows fast elimination of both, the bloom forming species and toxins, from the environment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.