Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
The quantitative analyses of karst spring discharge typically rely on physical-based models, which are inherently uncertain. To improve the understanding of the mechanism of spring discharge fuctuation and the relationship between precipitation and spring discharge, three machine learning methods were developed to reduce the predictive errors of physical-based groundwater models, simulate the discharge of Longzici spring’s karst area, and predict changes in the spring on the basis of long time series precipitation monitoring and spring water fow data from 1987 to 2018. The three machine learning methods included two artifcial neural networks (ANNs), namely multilayer perceptron (MLP) and long short-term memory–recurrent neural network (LSTM–RNN), and support vector regression (SVR). A normalization method was introduced for data preprocessing to make the three methods robust and computationally efcient. To compare and evaluate the capability of the three machine learning methods, the mean squared error (MSE), mean absolute error (MAE), and root-mean-square error (RMSE) were selected as the performance metrics for these methods. Simulations showed that MLP reduced MSE, MAE, and RMSE to 0.0010, 0.0254, and 0.0318, respectively. Meanwhile, LSTM–RNN reduced MSE to 0.0010, MAE to 0.0272, and RMSE to 0.0329. Moreover, the decrease in MSE, MAE, and RMSE was 0.0397, 0.1694, and 0.1991, respectively, for SVR. Results indicated that MLP performed slightly better than LSTM–RNN, and MLP and LSTM–RNN performed considerably better than SVR. Furthermore, ANNs were demonstrated to be prior machine learning methods for simulating and predicting karst spring discharge.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.