Efficient methods of utilization of waste chloroorganic compounds coming from waste water and the waste streams formed e.g. in the production of vinyl chloride by dichloroethane method and in the production of propylene oxide by chlorohydrin method have been presented. First the separation of chloroorganic wastes by the adsorption methods has been described in the article. Three valuable methods of chlorocompounds utilization have been then discussed. The first one is isomerization of 1,1,2-trichloroethane to 1,1,1-trichloroethane as the valuable product with less toxicity than a substrate. The second method is ammonolysis of waste 1,2-dichloropropane and 1,2,3-trichloropropane. The third described method is chlorolysis. This method can be used for the utilization of all types of waste chloroorganics.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The processes presented in the study enables the separation and disposal of the chloroorganic compounds as by-products from the vinyl chloride plant by using the dichlorethane method and also from the production of propylene oxide by the chlorohydrine method. The integrated purification method of steam stripping and adsorption onto activated carbon allows a complete removal and recovery of the chloroorganic compounds from waste water. Waste distillation fraction is formed during the production of vinyl chloride. 1,1,2-trichloroethane separated from the above fraction, can be processed to vinylidene chloride and further to 1,1,1-trichloroethane. 2,3-Dichloropropene, 2-chloroallyl alcohol, 2-chloroallylamine, 2-chlorothioallyl alcohol or bis(2-chloroallylamine) can be obtained from 1,2,3-trichloropropane. In the propylene oxide plant the waste 1,2-dichloropropane is formed, which can be ammonolysed to 1,2-diaminopropane or used for the production of β-methyltaurine. Other chloroorganic compounds are subjected to chlorinolysis which results in the following compounds: perchloroethylene, tetrachloromethane, hexachloroethane, haxachlorobutadiene and hexachlorobenzene. The substitution of the milk of lime by the soda lye solution during the saponification of chlorohydrine eliminates the formation of the CaCl2 waste.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.