Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The overarching aim was to reduce the frequency of connection failures that occur due to the connection speed and reliability, and identify, characterise and optimise the key process input variables (KPIVs). An experimental research approach with an inbuilt planned manipulation to one or more variables in the experimental data set was adopted. Key elements of the Six-Sigma methodology were applied to resolve the issue of high failures due to connection speed and reliability between two Li-Fi transceivers. KPIVs were successfully identified, characterised and optimised to implement a permanent corrective action to ensure a reduction in connection failures from 17% to 0%. The alignment between two Li-Fi transceivers along with Li-Fi cut-out was found to be critical in achieving good connection speed and reliability. The interference due to ambient visible spectrum lighting found to be statistically insignificant. This study explored the application and benefits of accessible wireless data communication technologies. Moreover, it sheds light on the probable factors that may influence Li-Fi connection speed and areas for future research. The current research provides a Six- Sigma based solution to high connection failure rates while using an infrared-based Li-Fi transceiver. Results also offer insights into the analytical tools that were found to be effective during the problem-solving process.
EN
The research aims to emphasise the relevance of the Design of Experiments (DOE) technique as a reliable method for ensuring efficient use of statistical methods in routine industrial processes. A case study approach with a deductive strategy was used to assess the effectiveness of different DOE methods to achieve the desired objectives. Screening, mid-resolution and high-resolution DOE methods helped identify, characterise, and optimise an experimental variable against the desired output response. A general framework for effective DOE is provided as part of DOE planning, including defining DOE objectives, selection criteria, noise reduction, and application across industries. Overall, various DOE models proved successful in identifying a complicated relationship between experimental variables and output response. However, when ideal DOE models may not be feasible, reducing test run by choosing lower resolution DOE or fewer replicates can still provide important insights into the experimental variables’ impact on output responses.
EN
Aiming to reduce flatness (Total Thickness Variation, TTV) defects in the lapping process of the silicon wafer manufacturing, it is crucial to understand and eliminate the root cause(s). Financial losses resulting from TTV defects make the lapping process unsustainable. DMAIC (Define, Measure, Analyse, Improve and Control), which is a Six Sigma methodology, was implemented to improve the quality of the silicon wafer manufacturing process. The study design and the choice of procedures were contingent on customer requirements and customised to ensure maximum satisfaction; which is the underlying principle of the rigorous, statistical technique of Six Sigma. Previously unknown causes of high TTV reject rates were identified, and a massive reduction in the TTV reject rate was achieved (from 4.43% to 0.02%). Also, the lapping process capability (Ppk) increased to 3.87 (beyond the required standard of 1.67), suggesting sustainable long-term stability. Control procedures were also effectively implemented using the techniques of poka yoke and control charts. This paper explores the utility of Six Sigma, a quality management technique, to improve the quality of a process used in the semiconductor industry. The application of the Six Sigma methodology in the current project provides an example of the root cause investigation methodology that can be adopted for similar processes or industries. Some of the statistical tools and techniques were used for the first time in this project, thereby providing new analysis and quality improvement platform for the future. The article offers a deeper understanding of the factors that impact on the silicon wafer flatness in the lapping process. It also highlights the benefits of using a structured problem-solving methodology like Six Sigma.
EN
The research study aims to evaluate the precision of the measurement system using Gauge R&R. An experimental research design adopting a positivist empirical approach with deductive strategy was followed to assess the effectiveness of Crossed Gauge R&R technique for validating a measurement system using destructive testing. Crossed Gauge R&R technique in Minitab was found to be highly effective in quantifying different components of measurement variation relative to process variation. Clue generation from the Crossed Gauge R&R study combined with manufacturing and measurement process know-how helped in identifying and eliminating the root causes for measurement variation. Overall Crossed Gauge R&R proved successful in validating the burst strength test equipment. However, it should be noted that manufacturing and test equipment played an equally important part in developing and executing the gauge R&R study and accurately analysing the results. So, Crossed Gauge R&R should be used as an aid rather than the solution for measurement system validation.
EN
The current research study aimed to explore the utility of selected problem-solving tools and techniques in root-cause analysis to demonstrate their practical application. An experimental research design adopting a positivist empirical approach with a deductive strategy was followed to assess the effectiveness of a combined (8D & Six Sigma) problem-solving approach in reducing a high defects rate of a mixer shower assembly line. A novel application of the 8D framework in combination with Six Sigma and other analytical tools was found highly effective in reducing the reject rate from 11.84% to 0.11%. Successful identification of the root cause led to the implementation of permanent corrective action ensuring a long-term stable assembly process. The research study provided a problem-solving framework that was found effective in resolving a complex problem and implementing long-term corrective action in an assembly production line. However, this framework can be used in other industries. The research study provides a solution to a high number of leak rejects in a subassembly where “O-seals” are used between mating parts. It also provides analytical tools that were found highly effective during the problem-solving process.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.