Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Hermite-Hadamard type inequalities for MTm-preinvex functions
100%
EN
In the present paper, the notion of MTm-preinvex function is introduced and some new integral inequalities for the left-hand side of Gauss-Jacobi type quadrature formula involving MTm-preinvex functions along with beta function are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for MTm-preinvex functions via classical integrals and Riemann-Liouville fractional integrals are established. At the end, some applications to special means are given. These results not only extend the results appeared in the literature (see [13]), but also provide new estimates on these types.
EN
In the present paper, the notion of generalized (s, m)-preinvex Godunova-Levin function of second kind is introduced, and some new integral inequalities involving generalized (s, m)-preinvex Godunova-Levin functions of second kind along with beta function are given. By using a new identity for fractional integrals, some new estimates on generalizations of Hermite-Hadamard, Ostrowski and Simpson type inequalities for generalized (s, m)-preinvex Godunova-Levin functions of second kind via Riemann-Liouville fractional integral are established.
EN
In this article, we first presented a new identity concerning differentiable mappings defined on m-invex set via k-fractional integrals. By using the notion of generalized relative semi-(r; m,p, q, h1, h2 )-preinvexity and the obtained identity as an auxiliary result, some new estimates with respect to Hermite-Hadamard type inequalities via k-fractional integrals are established. It is pointed out that some new special cases can be deduced from main results of the article.
EN
In the present paper, a new class of generalized (r; g, s, m, ϕ)-preinvex functions is introduced and some new integral inequalities for the left hand side of Gauss-Jacobi type quadrature formula involving generalized (r; g, s, m, ϕ)-preinvex functions are given. Moreover, some generalizations of Hermite-Hadamard type inequalities for generalized (r; g, s, m, ϕ)-preinvex functions via Riemann-Liouville fractional integrals are established. These results not only extend the results appeared in the literature (see [1],[2]), but also provide new estimates on these types.
5
Content available remote Fractional integral inequalities for composite and k-composite preinvex functions
80%
EN
In this article we found some Ostrowski inequalities for composite and k-composite preinvex functions via fractional integrals. Also some special cases will be given.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.