Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The effects of the growing season climatic factors (i.e., temperature, precipitation, vapor pressure and relative humidity) on the growing season maximum normalized difference vegetation index (MNDVI), which can mirror the aboveground net primary production and the vegetation maximum absorbed ability of photosynthetically active radiation, were examined during the period from 2000 to 2012 on the Tibetan Plateau. The effects of climatic factors on the MNDVI changed with vegetation types, which was probably due to the fact that the changes of climatic factors differed with the type of vegetation. There was a significant increasing trend for the spatially averaged MNDVI of the vegetation area over the entire plateau. Approximately 16 and 3% of the vegetation area demonstrated a significant MNDVI increasing and decreasing trend, respectively. The MNDVI was significantly affected by relative humidity and vapor pressure, but not affected by temperature and precipitation over the entire plateau. Our findings suggested that the environmental humidity played a predominant role in affecting the variation of MNDVI over the entire Tibetan Plateau.
EN
The effects of the growing season climatic factors (i.e., temperature, precipitation, vapor pressure and relative humidity) on the growing season maximum normalized difference vegetation index (MNDVI), which can mirror the aboveground net primary production and the vegetation maximum absorbed ability of photosynthetically active radiation, were examined during the period from 2000 to 2012 on the Tibetan Plateau. The effects of climatic factors on the MNDVI changed with vegetation types, which was probably due to the fact that the changes of climatic factors differed with the type of vegetation. There was a significant increasing trend for the spatially averaged MNDVI of the vegetation area over the entire plateau. Approximately 16 and 3% of the vegetation area demonstrated a significant MNDVI increasing and decreasing trend, respectively. The MNDVI was significantly affected by relative humidity and vapor pressure, but not affected by temperature and precipitation over the entire plateau. Our findings suggested that the environmental humidity played a predominant role in affecting the variation of MNDVI over the entire Tibetan Plateau.
EN
A warming experiment with two magnitudes was performed in an alpine meadow of Northern Tibet since late June, 2013. Open top chambers (OTCs) with two top diameters (0.60 m and 1.00 m) were used to increase soil temperature. Soil respiration (Rs) was measured during the growing season in 2013–2014. The OTCs with top diameters of 1.00 m and 0.60 m increased soil temperature by 1.30 and 3.10oC, respectively, during the whole study period, but decreased soil moisture by 0.02 and 0.05 m³ m⁻³, respectively. However, the two patters of OTCs did not affect Rs. These results implied that a higher warming did not result in a higher Rs but a greater soil drying. Therefore, a higher warming may not cause a higher soil respiration, which was most likely due to the fact that a higher warming may result in a greater soil drying.
EN
A warming experiment with two magnitudes was performed in an alpine meadow of Northern Tibet since late June, 2013. Open top chambers (OTCs) with two top diameters (0.60 m and 1.00 m) were used to increase soil temperature. Soil respiration (Rs) was measured during the growing season in 2013–2014. The OTCs with top diameters of 1.00 m and 0.60 m increased soil temperature by 1.30 and 3.10oC, respectively, during the whole study period, but decreased soil moisture by 0.02 and 0.05 m3 m-3, respectively. However, the two patters of OTCs did not affect Rs . These results implied that a higher warming did not result in a higher Rs but a greater soil drying. Therefore, a higher warming may not cause a higher soil respiration, which was most likely due to the fact that a higher warming may result in a greater soil drying.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.