In this paper, we study the modern mathematical theory of the optimal control problem associated with the fractional Roesser model and described by Caputo partial derivatives, where the functional is given by the Riemann-Liouville fractional integral. In the formulated problem, a new version of the increment method is applied, which uses the concept of an adjoint integral equation. Using the Banach fixed point principle, we prove the existence and uniqueness of a solution to the adjoint problem. Then the necessary and sufficient optimality condition is derived in the form of the Pontryagin’s maximum principle. Finally, the result obtained is illustrated by a concrete example.
In this paper, we consider an optimal control problem in which a dynamical system is controlled by a nonlinear Caputo fractional state equation. First we get the linearized maximum principle. Further, the concept of a quasi-singular control is introduced and, on this basis, an analogue of the Legendre-Clebsch conditions is obtained. When the analogue of Legendre-Clebsch condition degenerates, a necessary high-order optimality condition is derived. An illustrative example is considered.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.