We present a criterion for extending convexity preserving maps of convexity spaces. In a special case of convexity generated by a lattice structure this gives Sikorski's Extension Criterion for extending of maps of lattices. We also consider the class of convexity absolute extensors. It appears that complete Boolean algebras with a natural convexity belong to this class. In particular, we present an analogue of Tietze-Urysohn's Extension Theorem for maps of convexity spaces with values in a complete Boolean algebra.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Every lattice and, in particular, every Boolean algebra is a convexity space with a naturally defined convexity structure. We characterize complete Boolean algebras as the only S3 convexity spaces having an extension property for certain classes of convexity preserving maps. This answers our question posed in [1]. Our characterization provides also a short proof of Sikorski's extension theorem for homomorphisms of Boolean algebras.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We state a Frechet type theorem for measurable maps with values in an almost arcwise connected metrizable space. As an application, we obtain some results on continuous approximation of measurable multifunctions.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.