The present investigation reports the use of 2,4,6,8,10,12-hexanitro2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) in sheet explosive formulations. In this study, hydroxyl terminated polybutadiene (HTPB) based sheet explosives were prepared incorporating the powerful explosive CL-20 as a partial replacement for hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX). The effects of incorporating CL-20 on the performance, sensitivity, thermal and mechanical properties of the sheet explosive compositions are reported. Sheet explosive formulation containing 80% of RDX and 20% of HTPB-binder was studied as control sample. HTPBbinder consisted of 12% HTPB, 2.9% dioctyl adipate (DOA) and 5.1% dioctyl phthalate (DOP). HTPB was cured with 4,4’-methylene diphenyl di-isocyanate (MDI) to form urethane linkages. The incorporation of 20% of CL-20 in place of RDX led to a remarkable increase in the velocity of detonation (VOD), of the order of 7680 m/s, and to better mechanical properties in terms of tensile strength (1.14 MPa) compared to the control formulation [RDX /HTPB-binder (80/20)]. The 20% CL-20 incorporated sheet explosive formulation also showed remarkable increases in impact and shock sensitivity. Thermal analysis of the sheet explosive compositions has also been carried out using differential scanning calorimetry (DSC).
A plastic bonded explosive (PBX) in the form of a sheet explosive was formulated with 1,3,5-trinitro-1,3,5-triazinane (RDX) dispersed in a polymeric matrix of a thermoplastic linear polyurethane and a 50/50 wt.% eutectic mixture of energetic plasticizers, viz., bis(2,2-dinitropropyl)formal (BDNPF) and bis(2,2-dinitropropyl)acetal (BDNPA) was used to increase the performance of the sheet explosive in terms of its velocity of detonation (VOD). The sheet explosives were prepared by a rolling process. Natural rubber (ISNR-5) based sheet explosive was taken as the standard composition. The study showed that the BDNPF/A based sheet explosive has a velocity of detonation of 7850 m/s, which is about 900 m/s higher than the standard composition. Thermal analysis of the sheet explosive formulations was performed using differential scanning calorimetry (DSC).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.