Unlike traditional passive filters, modem active filters have the following multiple func-tions; harmonic filtering, damping, isolation and termination, reactive-power control for power factor correction and voltage regulation, load balancing, voltage-flicker reduction, and/or their combinations. Significant cost reductions in both power semiconductor devi-ces and signal-processing devices have inspired manufactures to put active filters on the market. This paper deals with general pure active filters for power conditioning, and spe-cific hybrid active filters for harmonic filtering of three-phase diode rectifiers, as well as traditional passive filters.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The main objective of this tutorial is to present the basic concepts on the instantaneous p-q Theory and then show its applicability for controlling switching converters connected in a micro-grid. These converters can be used for connecting renewable energy sources (solar, wind, and others) to the micro-grids or for harmonic, reactive power or unbalance compensation, and even for voltage regulation. The emphasis is given on the compensation characteristics derived from the p-q Theory, and simulation results of test cases are shown. Special attention is put on the oscillating component of the instantaneous real power, as it may produce torque oscillations or frequency variations in weak systems (micro-grids) generators. This oscillating component, as defined in the p-q Theory, gives the amount of oscillating energy between the source and the load, and its compensation through a switching compensator must have an energy storage element to exchange it with the load. With the p-q Theory this energy storage element can be easily calculated as a function of the average component of the instantaneous real power, which depends on the observation period.
PL
Głównym celem artykułu jest przedstawienie podstaw teorii mocy chwilowej p-q oraz jej zastosowanie w sterowaniu przekształtników kluczujących, włączonych w mikro-sieciach. Przekształtniki te są używane w celu połączenia odnawialnych źródeł energii (słonecznej, wiatru oraz innych) z mikro-sieciami lub w celu kompensacji harmonicznych i mocy biernej, kompensacji niezrównoważenia odbiorników, a nawet w celu regulacji napięcia. Nacisk w artykule położony jest na cechy kompensatorów wynikające z teorii p-q , a także przedstawione są w artykule wyniki modelowania sytuacji testowych. Szczególna uwaga poświęcona jest oscylującemu składnikowi mocy czynnej, gdyż w słabych systemach (mikrosieciach) może on powodować oscylacje momentu mechanicznego generatorów lub zmiany częstotliwości. Ten oscylujący składnik, zdefiniowany w teorii p-q , określa ilość energii oscylującej między źródłem i odbiornikiem. Jego kompensacja za pomocą kompensatora kluczującego wymaga zasobnika energii, umożliwiającego wymianę energii między kompensatorem i odbiornikiem. W artykule pokazano, że pojemność zasobnika energii może być łatwo obliczana za pomocą teorii p-q jako funkcja średniej wartości rzeczywistej mocy chwilowej, zależnej od okresu obserwacji.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.