Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom No. 79
87--95
PL
W artykule przedstawiono koncepcję wykorzystania sztucznych sieci neuronowych do rozwiązywania problemu lokalizacji źródeł zakłóceń powodujących pogorszenie jakości energii elektrycznej. W dziedzinie tej coraz częściej sięga się po rozwiązania oparte na sztucznej inteligencji, choć zazwyczaj stosowane algorytmy uczenia sieci neuronowych implementowane są jako programy komputerowe. Biorąc pod uwagę ogromną ilość danych, które muszą zostać przetworzone, rozwiązania takie nie są optymalne. Rozwiązaniem tego problemu może być zastosowanie równoległego przetwarzania danych, możliwego do uzyskania w sieciach neuronowych realizowanych jako specjalizowane układy scalone. Jest to celem naszych badań. W artykule przedstawiono jeden z etapów realizacji tego zadania - model sieci elektroenergetycznej, którego celem jest dostarczenie danych uczących dla projektowanej na poziomie tranzystorów sieci neuronowej. W realizowanej sieci neuronowej wykorzystano nowatorski algorytm oparty na filtracji błędu kwantyzacji, który pozwala znacząco skrócić fazę uczenia, przez co sieć jest w stanie szybko dostosować się do nowych danych.
EN
The paper presents a concept of using artificial neural networks to solve the prob- lem of the location of sources that cause deterioration in the quality of the electrical power. In this field the solutions that base on artificial intelligence are gaining popularity in recent time. However, the learning algorithms that are used in this case are usually implemented as computer programs. Given the large amount of data that must be processed, such solutions are not optimal. The solution to this problem may be the usage of parallel data processing obtainable in neural networks implemented, for example, as specialized integrated circuits. This is the purpose of our research. This paper presents one of the important steps in this task - a model of the electrical power system, the aim of which is to provide training data for the neural network. In the realized neural network a novel algorithm has been used that is based on filtering of the quantization error. By using this algorithm the learning phase can be substantially shortened, so that the network is able to quickly adapt to new data.
EN
A problem of establishing an optimal number of neurons in a hidden layer of a perceptron network used to predict survival time of patients with bladder cancer has been discussed. Our considerations are important in postoperative treatments of this illness. The applied neural network is a three layer one with one hidden layer. Its designing and testing were performed in MATLAB environment. As the network teaching method, classical error back-propagation algorithm with a momentum factor was applied. For the assumed model of the problem, we have obtained a characteristic graph of the function describing false results of the survival predictions. We have utilized a representative training set and investigated the network for different number of neurons in the hidden layer. A distinct error minimum has been observed for 13 neurons in this layer. It is not out of the question that the character of the achieved curve is repeatable for different input/ output vectors and may be practicable for determining the number of neurons in networks dedicated to biological models.
PL
W pracy podjęto próbę wskazania metody doboru optymalnej liczby neuronów dla warstwy ukrytej sieci neuronowej, analizującej dane modelu przeżycia pooperacyjnego u pacjentów z rakiem pęcherza moczowego. Trójwarstwową sieć zaprojektowano w środowisku Matlab, z zastosowaniem modelu perceptronu wielowarstwowego. Jako metodę uczenia sieci zastosowano klasyczny algorytm uczenia metodą wstecznej propagacji błędu ze współczynnikiem momentum. Dla założonego modelu przewidywania przeżycia u chorych z rakiem pęcherza moczowego uzyskano charakterystyczny przebieg krzywej błędnych prognoz. W oparciu o stworzony zbiór uczący zbadano działanie sieci dla różnej liczby neuronów w warstwie ukrytej. Zaobserwowano wyraźne minimum błędu dla 13 neuronów w tej warstwie. Nie można wykluczyć, że przebieg krzywej ma charakter powtarzalny dla różnych wektorów wejścia/wyjścia i może być pomocny w typowaniu liczby neuronów w sieciach dedykowanych modelowi biologicznemu.
|
|
tom z. 13
55--66
EN
This paper presents a subject of the Polarization Mode Dispersion (PMD). PMD is characteristic for a single mode optical fiber transmission. Several aspects have been presented in the paper, such as the interferometric method for measuring the PMD, as well as the statistical analysis of the measurement results contrasted with the analysis of the same results by use of the Kohonen neural network (KNN).
PL
W pracy omówiono zagadnienie dyspersji polaryzacyjnej – PMD (ang. Polarization Mode Dispersion), która jest charakterystyczna dla transmisji z wykorzystaniem jednomodowego włókna światłowodowego. Przedstawiono również interferometryczną metodę pomiaru współczynnika dyspersji polaryzacyjnej, statystyczną analizę rzeczywistych wyników pomiaru oraz analizę tych samych wyników pomiaru za pomocą sieci neuronowej Kohonena.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.