Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The ages of several Oligocene to Miocene sedimentary formations from the Eastern Carpathians Bend Zone are poorly constrained due to palaeoenvironmental factors, reworking of fossils, structural complexity and limited exposure. To help overcome these issues, this study integrates calcareous nannoplankton and foraminifera biostratigraphy with isotopic age dating (U-Pb) of volcaniclastic zircons, and sedimentological and structural observations/interpretations. Our study was carried out along an ~6-km-long section made from a series of outcrops along the Bizdidel River which exposes several formations such as the Pucioasa, Fusaru, Vinețișu, Starchiojd and Slon. We show that the Fusaru Formation consists of coarse-grained rocks deposited as confined longitudinal channel successions that migrated laterally. It is bounded by the mud-rich Pucioasa and Vinețișu formations which are lateral equivalents of the Fusaru confined channels deposited as levee/overbank units. These genetically related formations appear to reach younger ages – of the lower to middle Burdigalian based on calcareous nannoplankton and foraminifera biostratigraphy – than previously thought (upper Oligocene to lower Burdigalian). The dominant organic-rich mudstones of the Starchiojd Formation represent pelagites/hemipelagites deposited in anoxic conditions. Their middle Burdigalian age is established by a 17.41 ±0.27 Ma zircon U-Pb age of zircons from the Bătrâni Tuff in the Starchiojd Formation. Based on the similar phenocryst content, zircon U-Pb age and zircon trace element composition, the source of the tuff is suggested to be the 17.3 Ma Eger ignimbrite-forming eruption, which has proximal, near-caldera deposits in the Bükkalja Volcanic Field, Hungary. The mud-rich Slon Formation seems to be related to shelf edge/upslope failure that formed cohesive debrite avalanches resulting from foreland propagation of compression. The Slon Formation extends in this area to at least the upper part of the lower Miocene to middle Miocene. These results highlight the need to revise ages of those parts of the sequence which are poorly constrained or different in other parts of the Carpathian Basin. Such revised ages help to better constrain the understanding of the deformation history of the Carpathians.
EN
Romania has a long history of hydrocarbon production and tens of thousands of boreholes have penetrated Miocene strata. Many well cores or cuttings have been either lost or damaged, but lab reports containing valuable petrographic, paleontological and structural data are still available. Most of the knowledge of the subsurface relies on old descriptions and interpretations used by the oil industry. These data have not been recently updated, while research results from the last decade suggest potential changes in stratigraphy, especially for the lower to middle Miocene succession. In order to update, calibrate, and reduce uncertainties regarding the subsurface stratigraphic record, we have reviewed the lab reports and used equivalent field samples for an updated interpretation of the lower to middle Miocene succession. Core and cutting descriptions from boreholes covering an area of ~10,000 km2 in the Diapir Fold Zone of the Eastern Carpathians have been selected and biostratigraphically re-evaluated based on microfossils and calcareous nannofossils. In many cases, highly uncertain ages were previously interpreted as Oligocene and early Miocene. Our recent data suggest that most of the lower Miocene is either difficult to determine or has been reinterpreted as middle Miocene (e.g., Cornu and Doftana formations). This significant change in ages requires an updated model for the timing of regional structural evolution and may open new exploration opportunities in this highly mature hydrocarbon area. This study demonstrates the need for a new complete and reliable stratigraphic framework for the whole Miocene stratigraphic record of the Eastern Carpathians.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.