Dans l'étude de certaines questions relatives à la théorie des fonctions on est conduit parfois à envisager le problème suivant: Problème: Soient E_x un ensemble de mesure nulle reparti sur l'axe Ox, E_y un ensemble de mesure nulle reparti sur l'axe Oy (axes rectangulaires). Menons par les points de E_x des parallèles à Oy et par les points de E_y des parallèles à Ox, et soit E l'ensemble de tous les points d'intersection de ces deux familles de droites. Désignons par E_{λ} la projection orthogonale de E sur une droite Oλ faisant avec Ox un angle quelconque ϑ. La mesure de E_{λ} est une fonction f(ϑ) de ϑ qui s'annule pour ϑ = 0 et ϑ = π/2. Quelle est cette fonction, admet-elle d'autres zéros? La solution est immédiate, lorsque l'un au moins des ensembles E_x, E_y est dénombrable. En effet, dans ce cas la mesure de E_{λ} est nulle quel que soit ϑ, donc f(ϑ) =0. Mais il n'en est plus de même si aucun des ensembles E_x, E_y n'est dénombrable. Le but de cette note est de donner la solution de ce problème dans le cas particulièrement simple, où chacun des ensembles E_x, E_y est un ensemble parfait de Cantor.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Cantor sets are constructed from iteratively removing sections of intervals. This process yields a cumulative distribution function (CDF), constructed from the invariant Borel probability measure associated with their iterated function systems. Under appropriate assumptions, we identify sampling schemes of such CDFs, meaning that the underlying Cantor set can be reconstructed from sufficiently many samples of its CDF. To this end, we prove that two Cantor sets have almost-nowhere intersection with respect to their corresponding invariant measures.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We develop a method for calculating the persistence landscapes of affine fractals using the parameters of the corresponding transformations. Given an iterated function system of affine transformations that satisfies a certain compatibility condition, we prove that there exists an affine transformation acting on the space of persistence landscapes, which intertwines the action of the iterated function system. This latter affine transformation is a strict contraction and its unique fixed point is the persistence landscape of the affine fractal. We present several examples of the theory as well as confirm the main results through simulations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.