W istniejącej praktyce CO2 wprowadzany jest do betonu głównie poprzez przyspieszoną karbonatyzację, która ma wiele ograniczeń, takich jak mała szybkość dyfuzji i wymaganie dużej szczelnej komory, co ogranicza ją tylko do elementów prefabrykowanych. Aby pokonać te ograniczenia, niniejsza praca prezentuje nowatorskie wykorzystanie CO2 w produkcji betonu poprzez mineralizację z użyciem CO2. CO2 jest sekwestrowane do zawiesiny materiału cementowego bogatego w wapń w pierwszym etapie tego procesu, a następnie mieszany z pozostałymi materiałami, aby w drugim etapie wytworzyć beton. Dwuetapowy proces mineralizacji w niniejszej pracy upraszcza wprowadzenie CO2 do betonu i pozwala na uzyskanie 99% efektywności wykorzystania stosowanego CO2. CO2 reaguje z materiałami cementowymi bogatymi w wapń, tworząc korzystnie wpływający na hydratację betonu węglan wapnia w nano-skali. Analiza mikrostrukturalna sugeruje, że węglany rozpoczynają hydratację i przyczyniają się do rozwoju silniejszej mikrostruktury. Z tych powodów odporność na karbonatyzację utwardzonego betonu i wytrzymałość na ściskanie są poprawione. Wyniki opisywanych badań doświadczalnych pokazują, że optymalna ilość CO2 wprowadzona do betonu poprawia wytrzymałość na ściskanie o 18,2%, 18,8% i o 17,9% zmniejsza karbonatyzację po 180 dniach testów. Ponadto główny gaz cieplarniany, CO2, może być wykorzystywany, przyczyniając się do zrównoważonej i przyjaznej dla środowiska produkcji betonu i praktyk budowlanych.
EN
In the existing practice, CO2 is mainly added to concrete through accelerated carbonation, which has many limitations, such as a low diffusion rate and the requirement of a large airtight chamber, which applies to pre-cast elements only. To overcome these limitations, this paper presents a novel beneficial use of CO2 in concrete production through the mineralization of CO2. CO2 is sequestered into a slurry of calcium-rich cementitious material in the first step of this process and then blended with the remaining materials to make concrete in the second step. The two-step mineralization process in the present work simplifies the CO2 mineralization into concrete and reaches 99% efficiency of applied CO2. The CO2 reacts with calcium-rich cementitious materials to form nano-scale calcium carbonate beneficially impacted concrete hydration. Microstructural analysis suggests that the carbonates seed the hydration and contribute to developing a stronger microstructure. For these reasons, the carbonation resistance of hardened concrete and the compressive strength is improved. The finding of the experimental investigation of the present research shows that an optimum amount of CO2 mineralization into concrete improves compressive strength by 18.2%, 18.8%, and 17.9% less carbonation at 180 days of testing. Furthermore, the major greenhouse gas, CO2, can be utilized, contributing towards sustainable and environmentally friendly production of concrete and construction practices.
W artykule przedstawiono aktualny stan wiedzy w zakresie problematyki wychwytu oraz zagospodarowania dwutlenku węgla. W pierwszej części skupiono się na przeglądzie dostępnych metod wychwytu CO2 oraz zwrócono uwagę na metody, które mają największe szanse na komercyjne wdrożenie w przemyśle cementowym, rafineryjnym, hutniczym, papierniczym oraz energetyce. Wykonano obliczenia modelowe w celu określenia wpływu instalacji wychwytu CO2 na wskaźniki pracy bloku na przykładzie bloku gazowo-parowego klasy 600 MW. Analiza integracji wychwytu CO2 z blokiem gazowo-parowym miała na celu określenie energochłonności procesu i wpływu na wskaźniki energetyczne bloku. Uzyskane wyniki obliczeń porównano z wynikami podobnych analiz (różnych bloków energetycznych zasilanych paliwami kopalnymi) dostępnymi w publikacjach naukowych. Dla analizowanego modelu bloku gazowo-parowego zintegrowanego z wychwytem CO2 dokonano próby oszacowania nakładów inwestycyjnych na budowę instalacji CCS (bez uwzględnienia kosztów transportu CO2 oraz kosztów zmiennych). W drugiej części artykułu przedstawiono kwestię zagospodarowania CO2. W tym kontekście rozpatrywane były dwie opcje, tj. zatłaczanie pod ziemię (geologiczne składowanie) oraz utylizacja poprzez konwersję w inny wartościowy produkt. W końcowej części artykułu skupiono się na najistotniejszych barierach dla rozwoju wychwytu i utylizacji CO2, która wynika przede wszystkim z braku precyzyjnych regulacji prawnych, bardzo wysokich kosztów ekonomicznych oraz ograniczeń o charakterze technicznym.
EN
The article presents the state of the art in carbon capture and management. The first part of the article includes a review of available carbon capture technologies and highlights methods that have the greatest chance of commercial application in cement, refining, iron and steel, paper and power industries. The article presents model calculations made to assess the impact of the carbon capture facility on performance indicators of power units using the example of a 600 MW CCGT unit. The integration of CO2 capture with the CCGT unit is analyzed to determine energy consumption of the process and its impact on energy indicators of the unit. The calculation results are compared with the results of similar analysis (of different fossil fuel-fired power units) available in scientific publications. An attempt is made to estimate capital expenditures for construction of the CCS facility (excluding CO2 transport costs and variable costs) for the analyzed model of the CCGT unit integrated with CO2 capture. The second part of the article presents issues related to carbon management. In this context, two options are considered, i.e., underground injection (geological storage) and conversion into another valuable product. The final part of the article focuses on the most significant barriers to development of carbon capture and utilization, resulting mainly from the lack of precise legal regulations, very high economic costs and technical constraints.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.