Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zachowanie asymptotyczne rozwiązań
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
2
Content available remote On the asymptotic behaviour of solutions of nonlinear difference equations
100%
EN
This paper consists of three theorems. For the nonlinear difference equation (E) wzór sufficient conditions for the existence of the asymptotically constant solutions are given in Th. 1. In Th. 2 conditions under which there exists a solution (xn) of Eq. (E) such that xn = cn + o(1), are given. In Th. 3 conditions under which every solution (xn) of Eq. (E) possesses property: the sequence (xn/n is convergent in R, are presented.
3
Content available remote Asymptotic behaviour of solutions of nonlinear delay difference equations
100%
EN
Asymptoic properties of the solutions of the difference equation of the form ^(r(n-1)^x(n-1))+anf(x(n-k)=bn are studied.
4
75%
EN
The authors consider the nonlinear difference equation (E) delta2 ((delta(bn delta yn))+f(n,yn-t)=0, n należy N(no)={no,no+1,...}, here {an} and {bn} are positive real sequences, I is a nonnegative integer, f: N(no) x R R is a continuous function with uf(n, u) > 0 for all u nierówne 0. They obtain necessary and sufficient conditions for the existence of nonoscillatory solutions with a specified asymptotic behavior. They also obtain sufficient conditions for all solutions to be oscillatory if/ is either strongly sublinear or strongly superlinear. Examples of their results are also included.
EN
We consider the problem [wzór] posed in Ω x (0,+∞). Here Ω ⊂ Rn is a an open smooth bounded domain and φ is like [wzór] and ε = š1. We prove, in certain conditions on f and φ that there is absence of global solutions. The method of proof relies on a simple analysis of the ordinary inequality of the type w'' + δw' ≥ αw + βwp. It is also shown that a global positive solution, when it exists, must decay at least exponentially.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.