Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  zaburzenia ruchu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom nr 6
CD-CD
EN
In this paper an analysis of influence of traffic parameters of vessel, approaching to a hindrance, on the vessel traffic intensity after crossing a hindrance has been made.
PL
W niniejszym referacie przeanalizowano wpływ parametrów niezaburzonego strumienia ruchu statków, zbliżających się do przeszkody nawigacyjnej, na intensywność strumienia wyjściowego ruchu statków, po pokonaniu danej przeszkody.
EN
This article describes the development of a cost-effective, efficient, and accessible solution for diagnosing hand movement disorders using smartphone-based computer vision technologies. It highlights the idea of using ToF camera data combined with RG data and machine learning algorithms to accurately recognize limbs and movements, which overcomes the limitations of traditional motion recognition methods, improving rehabilitation and reducing the high cost of professional medical equipment. Using the ubiquity of smartphones and advanced computational methods, the study offers a new approach to improving the quality and accessibility of diagnosis of movement disorders, offering a promising direction for future research and application in clinical practice.
PL
W niniejszym artykule opisano opracowanie opłacalnego, wydajnego i dostępnego rozwiązania do diagnozowania zaburzeń ruchu ręki przy użyciu technologii wizyjnych opartych na smartfonach. Podkreślono w nim ideę wykorzystania danych z kamery ToF w połączeniu z danymi RG i algorytmami uczenia maszynowego do dokładnego rozpoznawania kończyn i ruchów, co przezwycięża ograniczenia tradycyjnych metod rozpoznawania ruchu, poprawiając rehabilitację i zmniejszając wysokie koszty profesjonalnego sprzętu medycznego. Wykorzystując wszechobecność smartfonów i zaawansowane metody obliczeniowe, badanie oferuje nowe podejście do poprawy jakości i dostępności diagnostyki zaburzeń ruchu, oferując obiecujący kierunek przyszłych badań i zastosowań w praktyce klinicznej.
|
|
tom Vol. 19, iss. 4
17-29
EN
The realisation stage of the algorithm of the system for evaluation of the electromechanical traction process from the point of view of motion disturbances with use of categories typical of artifical intelligence systems which has been presented concerns the supervised classification. Each class of the evaluation system input sampIes is represented by its own codebook vector. Non-supervised classification determines the basic class set and at the same time it defines the attachment or a input signal sample to one of the classes. At the stage of the supervised classification the classes are a priori known. The supervised classification is made on the base of the relation between the values of the evaluation indices within the classes of the process. The technical system arameters change during exploitation. The changes follow from wear of the technical system elements, they may depend on external influences and they may aIso be an effect of decisions made in the decision process. In connection with that - as the runs of typical processes as a rule differ from each other - it is assumed that so different exploitation processes are optimal from the point of view or parameters. This is a common base for comparative studies. The question under discussion is connected with creation or vector representation of sampIes in the processor system: by self-organisation, arranging of the reference vector values as well as quantisation of associated memory within subspaces of the classes. Non-supervised classification and supervised classification are the base for realisation of neuron-type processor structure intended for evaluation of electromechanical traction processes.
PL
Ocenianie elektromechanicznych procesów trakcyjnych ze względu na zaburzenia ruchu jest realizowane w samoorganizującej się procedurze rozpoznania i klasyfikacji informacji wejściowych, na podstawie pomiarów eksploatacyjnych zmiennych procesowych. Uporządkowany system przetwarzania informacji, posiadający atrybuty sztucznej inteligencji, tworzy podstawy aktywnego bezpieczeństwa mając na uwadze zagrożenia wynikające z eksploatacji transportowego systemu trakcyjnego. Klasyfikacja nadzorowana systemu oceniania elektromechanicznych procesów trakcyjnych ze względu na zaburzenia korzysta z systemu klas wyznaczanych w procedurze klasyfikacji nienadzorowanej . Klasyfikacja nadzorowana wyznacza przestrzeń realizacji wektora odniesienia (codebook vector) pamięci skojarzonej systemu oceniania. Przyjmuje się, że badane procesy, jakkolwiek różnią się od siebie, to eksploatacyjnie są podobne i parametrycznie optymalne. To określa wspólną platformę badań porównawczych. Klasyfikacja nadzorowana jest efektem oceniania ilościowych relacji próbek informacji wejściowej w klasach procesu oraz jakościowych relacji podprocesów, również w wielowymiarowych procesach trakcyjnych lokomotyw elektrycznych. Omawiane zagadnienia związane są z tworzeniem reprezentacji wektorowej próbek w systemie procesora poprzez: samoorganizację, porządkowanie wartości wektorów odniesienia oraz kwantyzację pamięci skojarzonej w podprzestrzeniach klas.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.