UNC-13 protein participates in regulating neurotransmitter release. In Drosophila melanogaster, proteasomal degradation controls UNC-13 levels at synapses. Function of the amino-terminal region of a 207 kDa form of Caenorhabditis elegans UNC-13 is unknown. Yeast two-hybrid and secondary yeast assays identified an F-box protein that interacts with this amino-terminal region. As F-box proteins bind proteins targeted for proteasomal degradation, this protein may participate in degrading a subset of UNC-13 proteins, suggesting that different forms of UNC-13 are regulated differently. Yeast assays also identified an exonuclease, a predicted splicing factor, and a protein with coiled-coil domains, indicating that UNC-13 may affect RNA function.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Caspase-8 is a member of the cysteine-aspartic acid protease (caspase) family which plays a central role in apoptosis and development. We screened caspase-8 interacting proteins from mouse T-cell lymphoma and 7.5-day embryo cDNA libraries by yeast two-hybrid system and obtained eleven positive clones, including Vacuolar protein sorting 41 (Vps41), a protein involved in trafficking of proteins from the late Golgi to the vacuole. The interaction of Vps41 with caspase-8 was confirmed by co-immunoprecipitation (co-IP) and co-localization studies in HEK293T cells. Co-IP experiments also showed that Vps41 binds to the p18 subunit of caspase-8 through its WD40 region and RING-finger motif. Furthermore, we found that overexpression of Vps41 promotes Fas-induced apoptosis in A549 human lung adenocarcinoma cells. The cleavage of caspase-3, a caspase-8 downstream effector, was increased when cells were transfected with Vps41-overexpressing plasmid. Together, these results suggest a novel interaction of caspase-8 with Vps41 and provide a potential role of Vps41 beyond lysosomal trafficking.
Cannabinoids display various pharmacological activities, including tumor regression, anti-inflammatory and neuroprotective effects. To investigate the molecular mechanisms underlying the pharmacological effects of cannabinoids, we used a yeast two-hybrid system to screen a mouse brain cDNA library for proteins interacting with type 1 cannabinoid receptor (CB1R). Using the intracellular loop 3 of CB1R as bait, we identified 14-3-3β as an interacting partner of CB1R and confirmed their interaction using affinity-binding assays. 14-3-3β has been reported to induce a cell cycle delay at the G2/M phase. We tested the effects of cannabinoids on cell cycle progression in HeLa cells synchronized using a double-thymidine block-and-release protocol and found an increase in the population of G2/M phase cells. We further found that CB1R activation augmented the interaction of 14-3-3β with Wee1 and Cdc25B, and promoted phosphorylation of Cdc2 at Tyr-15. These results suggest that cannabinoids induce cell cycle delay at the G2/M phase by activating 14-3-3β.
UNC-13 protein participates in regulating neurotransmitter release. In Drosophila melanogaster, proteasomal degradation controls UNC-13 levels at synapses. Function of the amino-terminal region of a 207 kDa form of Caenorhabditis elegans UNC-13 is unknown. Yeast two-hybrid and secondary yeast assays identified an F-box protein that interacts with this amino-terminal region. As F-box proteins bind proteins targeted for proteasomal degradation, this protein may participate in degrading a subset of UNC-13 proteins, suggesting that different forms of UNC-13 are regulated differently. Yeast assays also identified an exonuclease, a predicted splicing factor, and a protein with coiled-coil domains, indicating that UNC-13 may affect RNA function.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.