Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wyznacznik Hankela
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the paperwe discuss the functional Φf(μ) ≡ a2a4 − μa23 for functions in the class R(α), α ϵ [0, 1). This class consists of analytic functions which satisfy the condition Re f’ (z) > α for all z in the unit disk Δ.We show that the conjecture of Hayami and Owa [1], that is, |Φf(μ)| ≤ (1 − α)2 · max{ 1/2 – 4/9μ, 4/9μ} for all f ϵ R(α) and μ ϵ R, is false. Moreover, we find estimates of |Φf(μ)| that improve the results obtained by Hayami and Owa.
2
Content available remote Coefficient inequalities for a subclass of Bazilevič functions
67%
EN
Let f be analytic in D={z:|z| < 1} with f(z)=z+∑∞n=2anzn, and for α ≥ 0 and 0 < λ ≤ 1, let B1(α,λ) denote the subclass of Bazilevič functions satisfying (…) <λ for 0 < λ ≤ 1. We give sharp bounds for various coefficient problems when f ∈ B1(α,λ), thus extending recent work in the case λ = 1.
EN
The purpose of the present paper is to determine the coefficient bounds, fourth Hankel determinants, Toeplitz determinants for the function f in a subclass of analytic functions subordinate to 1+sin(z). We also study the Fekete-Szegö inequality and Zalcman conjecture for functions in this class.
PL
Celem tego badania jest ustalenie oszacowań współczynników wyznaczników Hankela czwartego rzędu oraz wyznaczników Toeplitza dla funkcji należących do podklasy funkcji analitycznych podporządkowanych wyrażeniu 1 + sin z. Dodatkowo, analizujemy nierówność Fekete-Szegő-Szegő oraz hipotezę Zalcmana dla funkcji w tejże klasie.
EN
We investigate the third Hankel determinant problem for some starlike functions in the open unit disc, that are related to shell-like curves and connected with Fibonacci numbers. For this, firstly, we prove a conjecture, posed in [17], for sharp upper bound of second Hankel determinant. In the sequel, we obtain another sharp coefficient bound which we apply in solving the problem of the third Hankel determinant for these functions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.