Oxy-combustion technology is based on the burning of fuel in an oxidant atmosphere with increased proportion of oxygen. By eliminating the nitrogen from the combustion process flue gas mainly consist of carbon dioxide and water vapor, allowing for the separation of CO2 from flue gas at a relatively low energy cost. Yet, production of high purity oxygen is bound with significant electricity consumption. The object of the analysis is a supercritical oxy-combustion coal-fired power plant. Auxiliary power demand is associated with the work of compressors in the cryogenic air separation unit and the installation of flue gas conditioning. The paper presents the results of thermodynamic analysis for different cases of compression installations organization extracted from individual blocks of the oxy-combustion unit. Analyzes were aimed to identify the potential for reducing energy consumption in the compression process by its appropriate organization and to define the energy potential of using the heat recovered in cooling and condensation in the individual sub-processes to replace the low-pressure regeneration.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.