This article presents comparative research to verify the suitability of selected machine learning methods for the problem of solving the inverse problem in electrical impedance tomography. The research involved the use of a tomograph to image areas of moisture inside the walls. The measurement data collected by the tomograph was transformed into 3D spatial images using two types of artificial neural networks - convolutional neural network (CNN) and recurrent long short-term memory network (LSTM).
PL
W tym artykule przedstawiono badania porównawcze w celu weryfikacji przydatności wybranych metod uczenia maszynowego do zagadnienia polegającego na rozwiązaniu problemu odwrotnego w elektrycznej tomografii impedancyjnej. Badania polegały na wykorzystaniu tomografu do obrazowania obszarów zawilgocenia wewnątrz murów. Zgromadzone za pomocą tomografu dane pomiarowe zostały przekształcone na obrazy przestrzenne 3D za pomocą dwóch rodzajów sztucznych sieci neuronowych – konwolucyjne sieci neuronowej (CNN) oraz sieci rekurencyjnej typu long short-term memory (LSTM).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.