The study is concerned about an application of the smoothed particle hydrodynamics (SPH) method in elastodynamics. A brief description of the SPH model for elastic materials and related stabilising terms are presented. The performance of the implemented SPH code is tested for elementary problems of linear elasticity as well as for a complex problem involving large deformations.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: The aim of the paper is to present the numerical modeling of soil penetration with the steel cylinder and experimental research of deflection of elastomer pillows in vibrating head. Design/methodology/approach: Simulations were performed using LS-DYNA package with two different methods to represent soil: a hybrid approach combining typical Lagrangian elements with Smoothed Particle Hydrodynamics (SPH) particles and Arbitrary Lagrangian-Eulerian (ALE) formulation. The experimental study was performed during work of the vibrating head using optical measuring methods. Two black and white cameras of high definition (1280x800) Vision Research Phantom V12 were used. Findings: As a result of conducted numerical simulations the behavior of the soil under condition of dynamic interaction of the steel element was reflected on the base of experimental research the maximum deflection of pillows was determined. Research limitations/implications: The modeling will be used to study the coupling of steel cylinder – soil for different soil properties and different speeds of load and its correctness was prooved. The presented results of experimental studies will be used for developing a construction of MRE regulator for vibrator resonance control. Practical implications: Presented investigations are the part of a new vibrator construction development in which the modeling of soil and its interaction with the steel-like elements will be crucial for obtaining satisfactory results as well as a presented experiment. Originality/value: New solutions to enhancing effectiveness for coupled mechanical systems can be achieved by using so called “smart” materials that have one or more properties that can be significantly changed in a controlled way by external stimulation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.