In this paper we present OvaExpert, an intelligent system for ovarian tumor diagnosis. We give an overview of its features and main design assumptions. As a theoretical framework the system uses fuzzy set theory and other soft computing techniques. This makes it possible to handle uncertainty and incompleteness of the data which is an unique feature of developed system. The main advantage of OvaExpert is its modular architecture which allows seamless extension of system capabilities. Two diagnostic modules are described in the paper along with examples. First module is based on aggregation of existing prognostic models for ovarian tumor. Second, on novel concept of Interval– Valued Fuzzy Classifier which is able to operate under data incompleteness and uncertainty.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper we present OvaExpert, an intelligent system for ovarian tumor diagnosis. We give an overview of its features and main design assumptions. As a theoretical framework the system uses fuzzy set theory and other soft computing techniques. This makes it possible to handle uncertainty and incompleteness of the data, which is a unique feature of the developed system. The main advantage of OvaExpert is its modular architecture which allows seamless extension of system capabilities. Three diagnostic modules are described, along with examples. The first module is based on aggregation of existing prognostic models for ovarian tumor. The second presents the novel concept of an Interval-Valued Fuzzy Classifier which is able to operate under data incompleteness and uncertainty. The third approach draws from cardinality theory of fuzzy sets and IVFSs and leads to a bipolar result that supports or rejects certain diagnoses.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.