The paper presents the method of measurement of the particulate matter in the exhaust gases of a Rolls-Royce Allison 250-C20B turbine engine in the aspect of the assessment of the technical condition of the bearing seals of the rotor shaft. The tests were carried out on 4 engines using a Horiba TEOM 1105 PM analyzer fitted with a mini dilution tunnel - Micro Diluter 6100. The paper also presents the method of determining of the engine technical condition index (bearing seals) developed by the authors based on the data obtained from the measurements. The reliability of the obtained results has also been subjected to evaluation.
PL
W artykule przedstawiono sposób pomiaru emisji cząstek stałych w gazach wylotowych silnika turbinowego Rolls-Royce Allison 250-C20B w aspekcie oceny stanu technicznego uszczelnień układu łożyskowania wałów wirnika. Badania przeprowadzono na czterech silnikach, przy użyciu analizatora cząstek stałych Horiba TEOM 1105 wyposażonego w minitunel rozcieńczający Micro Diluter 6100. Zaprezentowano opracowaną przez autorów metodę wyznaczania wskaźnika stanu technicznego silnika (uszczelnień łożysk), opierając się na danych uzyskanych z pomiarów. Poddano również ocenie wiarygodność uzyskanych wyników.
Condition monitoring and prognosis is a key issue in ensuring stable and reliable operation of mechanical transmissions. Wear in a mechanical transmission, which leads to the production of wear particles followed by severe wear, is a slow degradation process that can be monitored by spectral analysis of oil, but the actual degree of degradation is often difficult to evaluate in practical applications due to the complexity of multiple oil spectra. To solve this problem, a health index extraction methodology is proposed to better characterize the degree of degradation compared to relying solely on spectral oil data, which leads to an accurate estimation of the failure time when the transmission no longer fulfils its function. The health index is extracted using a weighted average method with selection of degradation data with allocation steps for weight coefficients that lead to a reasonable mechanical transmission degradation model. First, the degradation data used as input are selected based on source entropy which can describe the information volume contained in each set of spectral oil data. Then, the weight coefficient of each set of degradation data is modelled by measuring the relative scale of the permutation entropy from the selected degradation data. Finally, the selected degradation data are fused, and the health index is extracted. The proposed methodology was verified using a case study involving a degradation dataset of multispectral oil data sampled from several power-shift steering transmissions.
PL
Monitorowanie i prognozowanie stanu to kluczowa kwestia dla zapewnienia stabilnej i niezawodnej pracy przekładni mechanicznych. Zużycie w przekładni mechanicznej, które prowadzi do wytwarzania cząsteczek zużycia a następnie ciężkiego zużycia, to proces powolnej degradacji, który może być monitorowany poprzez analizę widmową oleju, ale rzeczywisty stopień degradacji często trudno jest ocenić podczas praktycznego użytkowania z uwagi na złożoność wielu widm oleju. W celu rozwiązania powyższego problemu, zaproponowano metodologię ekstrakcji wskaźnika stanu technicznego, aby lepiej scharakteryzować stopień degradacji niż polegając wyłącznie na danych widmowych oleju; pozwala to na dokładne prognozowanie czasu uszkodzenia, gdy przekładnia przestanie spełniać swoją funkcję. Wskaźnik stanu technicznego ekstrahowany jest za pomocą metody średniej ważonej z wyborem danych o degradacji i etapami alokacji dla współczynników wagowych, dając w efekcie odpowiedni model degradacji przekładni mechanicznej. W pierwszym etapie, dane degradacji stosowane jako dane wejściowe wybierane są na podstawie entropii źródłowej, która może opisywać zakres informacji zawarty w każdym zbiorze danych widmowych oleju. Następnie współczynnik wagowy każdego zestawu danych nt. degradacji modelowany jest przez pomiar względnej skali entropii permutacji z wybranych danych degradacji. Na koniec, wybrane dane degradacji są integrowane i ekstrahowany jest wskaźnik stanu technicznego. Zaproponowana metodologia została zweryfikowana przy użyciu studium przypadku obejmującego zbiór wielowidmowych danych dotyczących degradacji oleju pobranego z kilku przekładni kierowniczych wspomaganych.
Turbofan engines will gradually degrade until failure occurs or life ends if without maintenance. Reliable degradation assessment and remaining useful life (RUL) estimation make sense on both aviation safety and rational maintenance decisions. This paper proposes a data-driven prognostic method on the premise of run-to-failure (RtF) data which are multivariate sensory data collected from the engines operating from normal to failure. After necessary pre-processing to the data, clustering analysis is executed to generate the clusters which represent the multi-states of the degradation process. The failure state cluster is extracted, and then the distance between the pre-processed data and the cluster is calculated. Therefore, one-dimensional time series are generated and defined as the health indices. Afterwards the degradation models are built based on the health indices. Finally, the RUL of a testing unit can be estimated by similarity analysis with the models. Hierarchical clustering (HC) and relevance vector machine (RVM) are the main algorithms employed in this paper. To validate the proposition, a case study is performed on turbofan engines data from Prognostics Center of Excellence (PCoE) at NASA Ames Research Center, and sufficient comparisons were given.
PL
Silniki turbowentylatorowe niepoddane konserwacji ulegają stopniowej degradacji aż do czasu wystąpienia uszkodzenia lub zakończenia cyklu życia. Rzetelna ocena degradacji oraz pozostałego okresu użytkowania (RUL) mają wpływ zarówno na bezpieczeństwo maszyn lotniczych jak i racjonalne podejmowanie decyzji dotyczących utrzymania ruchu. W artykule zaproponowano sterowaną danymi metodę prognostyczną opartą na danych o pracy do czasu uszkodzenia (run-to failure, RTF), które są wielowymiarowymi danymi sensorycznymi zbieranymi podczas normalnej pracy silnika aż do jego uszkodzenia. Po niezbędnej wstępnej obróbce danych, przeprowadzono analizę skupień w celu wygenerowania skupień reprezentujących multi-stany procesu degradacji. Wyodrębniono klaster stanów uszkodzenia, a następnie obliczono odległość między wstępnie przetworzonymi danymi a wyodrębnionym klastrem. Następnie wygenerowano jednowymiarowe szeregi czasowe, które zdefiniowano jako wskaźniki stanu technicznego. Na podstawie tych wskaźników zbudowano modele degradacji. Wreszcie, w oparciu o analizę podobieństwa do opracowanych modeli oceniono RUL jednostki testowej. Główne algorytmy zastosowane w niniejszym opracowaniu to algorytmy grupowania hierarchicznego (HC) oraz maszyny wektorów istotnych (RVM). Aby zweryfikować zaproponowaną w pracy metodę, przeprowadzono studium przypadku z wykorzystaniem danych dot. silników turbowentylatorowych pochodzące z Prognostic Center of Excellence (PCoE) przy NASA Ames Research Center oraz przedstawiono odpowiednie porównania.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.