We show a connection between the polynomials whose inflection points coincide with their interior roots (let us write shorter PIPCIR), Legendre polynomials, and Jacobi polynomials, and study some properties of PIPCIRs (Part I). In addition, we give new formulas for some classical orthogonal polynomials. Then we use PIPCIRs to solve some partial differential equations (Part II).
In recent years, fractional calculus (FC) has filled in a hole in traditional calculus in terms of the effect of memory, which lets us know things about the past and present and guess what will happen in the future. It is very important to have this function, especially when studying biological models and integral equations. This paper introduces developed mathematical strategies for understanding a direct arrangement of fractional integro-differential equations (FIDEs). We have presented the least squares procedure and the Legendre strategy for discussing FIDEs. We have given the form of the Caputo concept fractional order operator and the properties. We have presented the properties of the shifted Legendre polynomials. We have shown the steps of the technique to display the solution. Some test examples are given to exhibit the precision and relevance of the introduced strategies. Mathematical outcomes show that this methodology is a comparison between the exact solution and the methods suggested. To show the theoretical results gained, the simulation of suggested strategies is given in eye-catching figures and tables. Program Mathematica 12 was used to get all of the results from the techniques that were shown.