Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wet torrefaction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Albizia Chinensis is a plant easily found in Indonesia and other South East Asian countries. The sawdust from this plant is a lignocellulosic waste that can be potentially upgraded for the fuel purposes. This research investigated the potential of upgrading sawdust into a coal-like solid for fuel by a wet torrefaction process. In this project, a 1 L torrefaction reactor with an electric heater was employed to perform the carbonization of the Albizia chinensis sawdust. Wet torrefaction was performed in batch at temperatures of 190–230°C with holding times of 20°C, 30 and 60 min. The solid to water ratios of 1:3, 1:5 and 1:10 were used. The results showed that the chemical and physical properties of sawdust and hydrochar varied as a function of reaction temperature, holding time and solid load. The results also suggested that wet torrefaction could increase the fixed carbon in sawdust while the ash content and volatile matter decreased. The high heating value of hydrochar was 24.55 MJ/kg higher than raw sawdust, 18 MJ/kg. CO2 was predominantly detected in the gas phase, reaching the of >90% CO2. The liquid products were identified as sugar and organic acid compounds, which may be desirable feedstock for biochemical production.
2
Content available remote Commoditization of wet and high ash biomass : wet torrefaction - a review
58%
EN
Biomass is a non-intermittent energy source, which can play an important role in grid-based energy systems, since they need some non-intermittent sources in order to balance the variability of intermittent sources as wind and solar energy. Currently, this role is played mostly by fossil fuels, mainly because of the bulk size of a single source. Higher variability and lower energy concentration, among with some properties of biomass, are obstacles that prevent it from fully becoming a commodity. There are processes, such as dry torrefaction and hydrothermal carbonization (HTC) that could potentially help in terms of making biomass a tradable commodity, as is the case with fossil fuels. HTC, also known as wet torrefaction, might help solve problems that dry torrefaction is incapable of solving. These obstacles are, namely: high ash content, slagging and fouling properties of biomass (along with corrosion). Also the high moisture content of some types of biomass poses a problem, since they usually require substantial amounts of heat for drying. This paper reviews current knowledge about a process that could possibly transform problematic types of biomass into tradable commodities and compares it with other processes offering similar outcomes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.