Groundwater is a precious source of fresh water and a major component of the entire water supply. Both water quality and quantity could be satisfied by evaluating the groundwater potential sites (GWPS). This paper analyzes the ground-water potentials in a semi-arid region of Khyber Pakhtunkhwa, Pakistan. It describes a standard methodology to identify and map GWPS using integrated Geographical Information System (GIS) and remote sensing (RS) methods. Eight parameters including elevation, slope, drainage density, lineaments density, soil, geology, land use/land cover and rainfall were integrated to explore areas with groundwater holding capability. GWPS were delineated through subjective weights assigned after coupling various thematic layers using Saaty’s Analytical Hierarchical Process (AHP). The modelled GWPS were cross-checked with tube wells data. The result indicates that the central part of the study area has good potential for groundwater reserves/exploitation, where the factors i.e. moderate to high drainage density, sedimentary sequence of alluvial plain, low elevation etc. discern the central portion of the study area as a suitable site for groundwater. This study suggests that the applied method proves to be very significant and reliable tool for timely assessment of quality assured evaluation of groundwater resources. This study could be a systematic guide for future investigations for water related explorations, especially in semi-arid environments.
Due to the indiscriminate use of limited water sources, the requirement for groundwater evaluation in India expanded substantially. Population growth and unequal distribution, poor irrigation systems, rapid urbanization/industrialization, large-scale deforestation, droughts, and inefficient land use practises contribute to groundwater depletion.As a result, the need for water for agriculture, domestic, and industry soars. The study identifies viable zones in Visakhapatnam’s emerging metropolitan metropolis by utilising the Analytical Hierarchy Process (AHP) approach with remote sensing data in ArcGIS software. Thematic layers were created by taking remote sensing data into consideration (drainage density, soil, lineament density, land use land cover, geomorphology, rainfall, slope, and geology). The method is employed to determine the weights of distinct thematic layers by obtaining the normalised weight from a pairwise matrix.To emphasize the groundwater potential zones and create a map with different zones specified, the weights and ranks extrapolated from the AHP approach have been made available in the weighted index overlay analysis tool in ArcGIS.Groundwater availability and recharge are significantly high in the good zone of the present study’s four classifications of good, moderate, low, and very low. The groundwater status, potential locations for water extraction, and best practises for groundwater recharging may all be determined with the use of the acquired information from the indication map.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.