Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  wearable devices
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Our study aimed to present amateur sports models during the CO VID-19 restrictions on outdoor activities. We used mixed research methods: the questionnaire research data and information available through wearable devices. We investigate physical activity phenomena based on questionnaire results and existing data from a popular social networking site. Firstly, we asked respondents about their training types, rhythm, and preferences in using new technologies (wearables devices and social networks to upload and share results) in individual physical activity practices. Secondly, we also used a collection of over 11 thousand photos of 3138 users, with metadata downloaded from Instagram to compare declarations and content. The obtained data were processed using machine learning and Python software. Analyzing the results, we showed a change in the intensity of practicing three selected types of activity. We also analyzed the data set (photos, tags, and metadata) from a social network. The conclusions show the potential of triangulation of methods and data to describe the amateur physical activity and the change of these practices during CO VID-19 limitations in indoor and outdoor sports.
2
Content available Wearable devices in clinical gait analysis
72%
EN
Portable, efficient, exact, detailed, early and cost-effective clinical gait analysis (CGA) has key influence for planning, development and assessment rehabilitation strategies and models, as far as for prosthetics assessment. Novel families of mobile CGA solutions may provide earlier detection, more exact diagnosis, and more effective therapy of the gait disorders. Remote integration of aforementioned solutions to hospital information system may provide better and more actual knowledge for clinical decision-making purposes. This study aims at review of the alternative wearable devices to measure selected gait parameters, depending on the desired accuracy level.
PL
Mobilna, efektywna, dokładna, szczególowa, wczesna i tania kliniczna analiza chodu ma kluczowy wpływ na planowanie, postęp i ocenę strategii i modeli rehabilitacji, jak również przedmiotów zaopatrzenia ortopedycznego. Nowe rodziny mobilnych rozwiązań do klinicznej analizy chodu mogą zapewnić wczesniejsze wykrywanie, dokładniejszą diagnostykęoraz efektywniejszą terapię deficytów chodu. Zdalna integracja ww. rozwiązań ze szpitalnym systemem informacyjnym może zapewnić lepszą i aktualniejszą wiedzę na potrzeby klinicznego podejmowania decyzji. Niniejszy artykuł stanowi przegląd urządzeń do pomiaru wybranych parametrów chodu, w zależności od poządanej dokładności.
EN
In this work, a hybrid structure was proposed to harvest both mechanical and heat energy sources available in the human body. The device is designed to harvest both the thermal radiation of the human body based on the proposed solution-processed photovoltaic structure and the mechanical movement of the human body based on an electrostatic generator. The photovoltaic structure is used to charge the capacitor at the initial step of each conversion cycle. The simple fabrication process of the photovoltaic device can potentially address the problem associated with the charging method of the electrostatic generators. The simulation results showed that the combination of two methods can significantly increase the harvested energy from 2.2 μW/cm2 in the case of the harvesting thermal energy to 1.47 mW/cm2 in the case of harvesting both thermal energy and mechanical energy.
PL
Zaproponowano hybrydową strukturę do pozyskiwania mechanicznej I cieplnej energii wytwarzanej przez ciało człowieka. Wykorzystywane jest zjawisko fotowoltaiczne do ładowania kondensatora. Pozyskana energia jest rzędu 2.2 μW/cm2.
PL
Choroby układu sercowo-naczyniowego są najczęstszą przyczyną zgonów na świecie. Rozszerzenie tradycyjnych metod diagnostyki i monitorowania pacjentów (EKG, Holter EKG) o dodatkowe biosygnały, oraz zastosowanie zaawansowanych metod analizy zarejestrowanych danych pozwoli na wczesną reakcję na wystąpienie epizodów zagrażających zdrowiu lub życiu pacjenta. W poniższej pracy zaprezentowano dwa urządzenia nasobne do monitorowania systemu sercowo-naczyniowego: SleAp oraz Pathmon. Umożliwiają one długotrwałą rejestrację szeregu biosygnałów, pozwalających na detekcję bezdechów, ocenę elektrycznej i mechanicznej aktywności serca, oraz zarejestrowanie czynności oddechowej.
EN
Cardiovascular system diseases are the most common cause of death. The extension of traditional diagnostic and patient monitoring methods (ECG, Holter ECG) by additional biosignals, and use of advanced analysis methods of recorded data will allow for early response to the occurrence of episodes endanger the health or life of the patient. The following paper presents two wearable devices to monitor the cardiovascular system SleAp and Pathmon. They allow long-term recording of the number of biosignals, enabling the detection of apnea and assessment of the electrical and mechanical activity of the heart, as well as respiration signal recording.
5
Content available remote Electroactive fabrics and wearable biomonitoring devices
72%
EN
The implementation of truly wearable, instrumented garments which are capable of recording biomechanical variables is crucial in several fields of application, from multi-media to rehabilitation, from sport to artistic fields. In this paper we discuss wearable devices (a smart shirt, a leotard and a glove) which can read and record the vital signs and movements of a subject wearing the system. The sensing function of the garments is based on piezo-resistive fabric sensors, based on carbon-loaded rubbers (CLR) and different conductive materials.
EN
The monitoring of physiological parameters using wearable (bio-) sensors of military personnel is a progressing process within the military environment. It sets high demands on such devices, in order to support healthcare and performance of the personnel. To get an overview of the current status of the use, the evaluation and the implementation in the military, in May 2021, the Multinational Medical Coordination Centre / European Medical Command has organized an expert workshop about ‘Biosensors Supporting Healthcare in Missions’. Three thematic clusters were addressed: ‘Human Performance and Readiness’; ‘Health and Medical Management Applications’ and ‘Ethical and Legal Aspects of the Use of Biosensors’.
EN
The acquisition of ECG signals offers physicians and specialists a very important tool in the diagnosis of cardiovascular diseases. However, very often these signals are affected by noise from various sources, including noise generated by movement during physical activity. This type of noise is known as Motion Artifact (MA) which changes the waveform of the signal, leading to erroneous readings. The elimination of this noise is performed by different filtering techniques, where the adaptive filtering using the LMS (least mean squares) algorithm stands out. The objective of this article is to determine which algorithms best deal with motion artifacts, taking into account the use of instruments or wearable equipment, in different conditions of physical activity. A comparison between different algorithms derived from LMS (NLMS, PNLMS and IPNLM) used in adaptive filtering is carried out using indicators such as: Pearson's Correlation Coefficient, Signal to Noise Ratio (SNR) and Mean Squared Error (MSE) as metrics to evaluate them. For this purpose, the mHealth database was used, which contains ECG signals taken during moderate to medium intensity physical activities. The results show that filtering by IPNLMS as well as PNLMS offers an improvement both visually and in terms of SNR, Pearson, and MSE indicators.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.