Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  weakly supervised learning
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2024
|
tom Vol. 49, No. 1
95--118
EN
Automatic crack detection in construction facilities is a challenging yet crucial task. However, existing deep learning (DL)-based semantic segmentation methods for this field are based on fully supervised learning models and pixel-level manual annotation, which are time-consuming and labor-intensive. To solve this problem, this paper proposes a novel crack semantic segmentation network using weakly supervised approach and mixed-label training strategy. Firstly, an image patch-level classifier of crack is trained to generate a coarse localization map for automatic pseudo-labeling of cracks combined with a thresholding-based method. Then, we integrated the pseudo-annotated with manual-annotated samples with a ratio of 4:1 to train the crack segmentation network with a mixed-label training strategy, in which the manual labels were assigned with a higher weight value. The experimental data on two public datasets demonstrate that our proposed method achieves a comparable accuracy with the fully supervised methods, reducing over 65% of the manual annotation workload.
EN
For medical image recognition, deep learning requires a massive training set, while anno-tation work is a tedious and time-consuming process because of the high technical thresh-old. Furthermore, it is difficult to guarantee annotation accuracy due to the knowledge, skills, and status of the annotator. In this research, we propose a semi-automated annota- tion model based on weakly supervised learning. Moreover, a target-level annotation method is proposed based on weakly supervised learning that is guided by machine learning. The machine learning method is used to screen the regions of interest (RoIs), whose semantic feature vectors are extracted by the deep learning method. Then, the machine learning method is used to cluster them, and the RoIs are finally classified and labeled by a distance comparison. Therefore, this model achieves target-level semi-auto- mated annotation by only using image-level annotations. We applied this method to ultrasound imaging of thyroid papillary carcinoma. The experiments demonstrate the potential of this new methodology to reduce the workload for pathologists and increase the objectivity of diagnoses. We find that 89.8% of papillary thyroid carcinoma regions can be detected automatically, while 82.6% of benign and normal tissue can be excluded without the use of any additional immunohistochemical markers or human intervention.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.