Let X = (Xt) t ≥ 0 be a bounded martingale and let Y = (Yt) t ≥ 0 be differentially subordinate to X. We prove that if 1 ≤ p < ∞ and W = (Wt) t ≥ 0 is an Ap weight of characteristic [W] Ap, then ∥Y∥Lp, ∞ (W) ≤ Cp [W]Ap∥X∥L∞(W). The linear dependence on [W]Ap is shown to be the best possible. The proof exploits a weighted exponential bound which is of independent interest. As an application, a related estimate for the Haar system is established.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.