Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  weak axioms of choice
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On the existence of almost disjoint and MAD families without AC
100%
|
2019
|
tom Vol. 67, no. 2
101--124
EN
In set theory without the Axiom of Choice (AC), we investigate the deductive strength and mutual relationships of the following statements: 1) Every infinite set X has an almost disjoint family A of infinite subsets of X with [formula]. (2) Every infinite set X has an almost disjoint family A of infinite subsets of X with [formula]. (3) For every infinite set X, every almost disjoint family in X can be extended to a maximal almost disjoint family in X. (4) For every infinite set X, no infinite maximal almost disjoint family in X has cardinality [formula]. (5) For every infinite set A, there is a continuum sized almost disjoint family A ⊆ Aω. (6) For every free ultrafilter U on ω and every infinite set A, the ultrapower Aω/U has cardinality at least [formula].
2
Content available remote On the compactness and countable compactness of 2R in ZF
80%
EN
In the framework of ZF (Zermelo-Fraenkel set theory without the Axiom of Choice) we provide topological and Boolean-algebraic characterizations of the statements "2R is countably compact" and "2R is compact".
|
|
tom Vol. 53, no 4
349-359
EN
Let X be an infinite set, and P(X) the Boolean algebra of subsets of X. We consider the following statements: BPI(X): Every proper filter of P(X) can be extended to an ultrafilter. UF(X): P(X) has a free ultrafilter. We will show in ZF (i.e., Zermelo–Fraenkel set theory without the Axiom of Choice) that the following four statements are equivalent: (i) BPI(ω). (ii) The Tychonoff product 2R, where 2 is the discrete space {0, 1}, is compact. (iii) The Tychonoff product [0, 1] R is compact. (iv) In a Boolean algebra of size ≤ |R| every filter can be extended to an ultrafilter. We will also show that in ZF, UF(R) does not imply BPI(R). Hence, BPI(R) is strictly stronger than UF(R). We do not know if UF(ω) implies BPI(ω) in ZF. Furthermore, we will prove that the axiom of choice for sets of subsets of R does not imply BPI(R) and, in addition, the axiom of choice for well orderable sets of non-empty sets does not imply BPI(ω).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.