Phytoplankton and hydrological data were collected during the Greenland Sea Project between 74o and 76oN, 13o and 20oE, in July 1988 and 1991. The water masses were very different with regard to their hydrology in the two years, especially with regard to the displacement of the frontal zone. The phytoplankton community was similar in both years, however. Multivariate analyses have not shown any significant relationship between phytoplankton abundance, salinity, nutrients and temperature. It was assumed that the water mass as a single, comprehensive system influences phytoplankton occurrence, and its origin determines the phytoplankton recorded in the frontal zone.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Hydrographic data from the North Aegean Sea were used to examine the summer variability of surface water masses during the period 1998-2001. Attention was placed on the surface hydrographic features of the area, such as the Black Sea Water (BSW) plume expansion, the frontal characteristics of the BSW with the Levantine Intermediate Water (LIW) and the variability of submesoscale hydrographic features (such as the Samothraki Anticyclone). Strong southerly wind stresses were found responsible for relaxing the horizontal density gradients across the BSW-LIW frontal zone and displacing this front to the north of Lemnos Island, thus suppressing the Samothraki Anticyclone towards the Thracian Sea continental shelf. Under northerly winds, the BSW-LIW front returns to its regular position (south of Lemnos Island), thus allowing the horizontal expansion of the Samothraki gyre up to the Athos Peninsula. Present results indicate the importance of medium-term wind stress effects on the generation of Samothraki Anticyclone suppression/expansion events.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The Arabian Gulf is a very significant ocean body, which hosts more than 55% of the oil reserves of the world and produces about 30% of the total production, and thus, it is likely to face high risk and adverse problems by the intensified environmental stressors and severe climatic changes. Therefore, understanding the hydrography of the Gulf is very essential to identify various marine environmental issues and subsequently, developing marine protection and management plans. In this study, hydrography data collected at 11 stations along 3 linear transects in the early summer of 2016 were analyzed. The physicochemical parameters exhibited apparent variations along each transect, both laterally and vertically, connected to stratification, formation of different water masses and excessive heating. The temperature and salinity decreased laterally from nearshore to offshore, while layered density structures were identified in the offshore regions. The pH, dissolved oxygen (DO) and chlorophyll fluorescence (Fo) exhibited distinct horizontal and vertical variations. The observed pH is within the normal ranges, indicating that seawater acidification may not be a threat. The highest DO (6.13–8.37 mg/l) was observed in a layer of 24—36 m water depth in the deeper regions of the central transect.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.