Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  visual servoing
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the ever increasing number of robotic system applications in the industry, the robust and fast visual recognition and pose estimation of workpieces are of utmost importance. One of the ubiquitous tasks in industrial settings is the pick-and-place task where the object recognition is often important. In this paper, we present a new implementation of a work-piece sorting system using a template matching method for recognizing and estimating the position of planar workpieces with sparse visual features. The proposed framework is able to distinguish between the types of objects presented by the user and control a serial manipulator equipped with parallel finger gripper to grasp and sort them automatically. The system is furthermore enhanced with a feature that optimizes the visual processing time by automatically adjusting the template scales. We test the proposed system in a real-world setup equipped with a UR5 manipulator and provide experimental results documenting the performance of our approach.
EN
The problem of the real time estimation of the position and orientation of moving objects for position-based visual servoing control of robotic systems is considered in this paper. A computationally efficient algorithm is proposed based on Kalman filtering of the visual measurements of the position of suitable feature points selected on the target objects. The efficiency of the algorithm is improved by adopting a pre-selection technique of the feature points, based on Binary Space Partitioning (BSP) tree geometric models of the target objects, which takes advantage of the Kalman folter prediction capability. Computer simulations are presented to test the performance of the estimation algorithm in the presence of noise, different types of lens geometric distortion, quantization and calibration errors.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.