Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  viscous dissipation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom Vol. 23, no. 3
787--801
EN
This study examines the effect of thermal radiation, chemical reaction and viscous dissipation on a magnetohydro- dynamic flow in between a pair of infinite vertical Couette channel walls. The momentum equation accounts the effects of both the thermal and the concentration buoyancy forces of the flow. The energy equation addresses the effects of the thermal radiation and viscous dissipation of the flow. Also, the concentration equation includes the effects of molecular diffusivity and chemical reaction parameters. The gray colored fluid considered in this study is a non-scattering medium and has the property of absorbing and emitting radiation. The Roseland approximation is used to describe the radiative heat flux in the energy equation. The velocity of flow transforms kinetic energy into heat energy. The increment of the velocity due to internal energy results in heating up of the fluid and consequently it causes increment of the thermal buoyancy force. The Eckert number being the ratio of the kinetic energy of the flow to the temperature difference of the channel walls is directly proportional to the thermal energy dissipation. It can be observed that increasing the Eckert number results in increasing velocity. A uniform magnetic field is applied perpendicular to the channel walls. The temperature of the moving wall is high enough due to the presence of thermal radiation. The solution of the governing equations is obtained using regular perturbation techniques. These techniques help to convert partial differential equations to a set of ordinary differential equations in dimensionless form and thus they are solved analytically. The following results are obtained: from the simulation study it is observed that the flow pattern of the fluid is affected due to the influence of the thermal radiation, the chemical reaction and viscous dissipation. The increment in the Hartmann number results in the increment of the Lorentz force but a decrement in velocity of the flow. An increment in the radiative parameter results in a decrement in temperature. An increment in the Prandtl number results in a decrement in thermal diffusivity. An increment in both the chemical reaction parameter and molecular diffusivity results in a decrement in concentration.
|
|
tom Vol. 14, no 4
965-987
EN
Fluid flow and heat transfer of a power law fluid flowing over a wedge, taking into consideration viscous dissipation, in the presence of a magnetic field is investigated. The governing partial differential equations are reduced to ordinary differential equations by the application of group theory. By using quasi-linearization technique, first we linearized the coupled non-linear equations are first linearized, and then solved them numerically by a finite difference method. Numerical solutions for the governing momentum and energy equations are obtained. Results are presented as velocity profiles and temperature profiles for different flow parameters, such as, the magnetic field parameter M, Prandtl number Pr, Eckert number Ec, the flow behavior index n, and the wedge angle parameter m. Variations of heat transfer and skin friction for different values of Ec, Pr, M and m are presented. Heat transfer and skin friction results are compared for various values of the flow behaviour index n governing the nature of the fluid and also for different wedge angles.
EN
A computational model is presented to explore the properties of heat source, chemically reacting radiative, viscous dissipative MHD flow of an incompressible viscous fluid past an upright cone under inhomogeneous mass flux. A numerical study has been carried out to explore the mass flux features with the help of Crank-Nicolson finite difference scheme. This investigation reveals the influence of distinct significant parameters and the obtained outputs for the transient momentum, temperature and concentration distribution near the boundary layer is discussed and portrayed graphically for the active parameters such as the Schmidt number Sc, thermal radiation Rd, viscous dissipation parameter […], chemical reaction parameter […], MHD parameter M and heat generation parameter ]…]. The significant effect of parameters on shear stress, heat and mass transfer rates are also illustrated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.