Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  virtual synchronous generator
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2023
|
tom Vol. 72, nr 4
971--986
EN
In response to the inability of the flexible DC transmission system connected to the AC grid under conventional control strategies to provide inertia to the system as well as to participate in frequency regulation, a virtual synchronous generator (VSG) control strategy is proposed for a voltage source converter (VSC)-based multi-terminal high-voltage direct current (VSC-MTDC) interconnection system. First, the virtual controller module is designed by coupling AC frequency and active power through virtual inertia control, so that the VSC-MTDC system can provide inertia response for AC grid frequency. Second, by introducing the power margin of the converter station into the droop coefficient, the unbalanced power on the DC side is reasonably allocated to reduce the overshoot of the DC voltage in the regulation process. Finally, the power regulation capability of the normal AC system is used to provide power support to the fault end system, reducing frequency deviations and enabling inter-regional resource complementation. The simulation model of the three-terminal flexible DC grid is built in PSCAD/EMTDC, and the effectiveness of the proposed control strategy is verified by comparing the conventional control strategy and the additional frequency control strategy.
|
2018
|
tom S 2
139--148
EN
There are promising application prospects for applying the shore power technology to the ships in the port for the purpose of pollution prevention. However, the grid-connection of the shore power supply to the ship power grid leads to current surges, damages the ship power consumption equipment, and results in the instability of the ship power grid system, which will seriously affect the reliability of the operation of the ship power grid system. In order to address this problem, the mathematical model of virtual synchronous generator is introduced in this paper. Then, a control method for the flexible grid-connection of the shore power supply to the ship power grid based on the virtual synchronous generator is proposed. Next, the output characteristics of the shore power supply are optimized to match the characteristics of the ship generator, which contributes to the flexible grid-connection of the shore power supply to the ship power grid system. The effectiveness and the feasibility of this method are verified by simulation and experiments.
|
2022
|
tom Vol. 71, nr 4
811--828
EN
Different from the synchronization mechanism of synchronous generators, the non-synchronous generators must be synchronized with the grid through a controller. Generally, the virtual synchronous generator (VSG) control strategy is adopted for this purpose. In view of the current situation, where the control loops are not comprehensively considered in the research of the synchronization stability of the VSG, this paper considers multiple control loops, such as active frequency loops, virtual governors, power filters and current constraint control, to establish the mathematical model of the VSG and infinite system. On this basis, the correlation formula between power angle difference and control parameters is deduced. Adopting the phase plane method, the influence of different control loops and their parameters on the transient synchronization stability is analyzed. Finally, a setting principle of the frequency modulation coefficient of virtual governors is proposed, which not only meets the response speed of control systems, but also has good control performance.
|
|
tom Vol. 72, nr 3
755--768
EN
The problem of large speed loss exists in the traditional passing through the electric phase-separation method of trains, which is more prominent when trains pass through an electric phase-separation zone in the uphill section of long ramps and may lead to the trains not passing through the phase-separation zone safely. In order to solve this problem, based on the energy storage type railroad power conditioner, a train uninterrupted phase-separation passing system based on the energy storage type railroad power conditioner is proposed. The energy storage railroad power conditioner can realize the recovery and utilization of regenerative braking energy of the electrified railroad. In the structure of the energy storage railroad power conditioner, the single-phase inverter is led from the middle DC side of the energy storage railroad power conditioner and connected to the neutral line through the LCL filter and the step-up transformer, which constitutes an uninterrupted phase separation passing system. The single-phase inverter is controlled using virtual synchronous generator technology, which allows the single-phase inverter to have external characteristics similar to those of a synchronous generator, providing support for the voltage and frequency in the neutral zone. The power required by the train to pass the electric phase-separation is provided by the power supply arm or the energy storage system, which not only improves the utilization rate of regenerative braking energy but also realizes the uninterrupted phase separation passing of the train through the control of the voltage in the neutral region.
EN
Three synchronous machine models representing three precision levels (complete, reduced and static), implemented in a virtual synchronous generator (VSG)-based industrial inverter, are compared and discussed to propose a set of tests for a possible standardization of VSG-based inverters and to ensure their “grid-friendly” operation in the context of isolated microgrids. The models and their implementation in the microcontroller of an industrial inverter (with the local control) are discussed, including the usability of the implementation with large-scale developments constraints in mind. The comparison is conducted based on existing standards (for synchronous machines and diesel generators) in order to determine their needed evolution, to define the requirements for future grid-friendly inverter-based generators, notably implementing a VSG solution.
EN
The virtual synchronous generator (VSG) and sinusoidal pulse width modulation (SPWM) are two prominent control strategies that have attracted particular interest recently. In this paper, we compare these two inverter control strategies in a 5MW wind power conversion chain. The studied conversion chain includes a wind turbine, a permanent magnet synchronous generator, the power converters, namely the uncontrolled rectifier, and a two-stage inverter connected to the grid via an LCL filter. Our study of the two control methods shows that both strategies reduce the total harmonic distortion (THD) while respecting the grid connection conditions. The simulation results manifest that the VSG strategy has a better THD reduction of 0.99 % which is improved compared to the SPWM with a THD of 1.33%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.