Videoplethysmography is currently recognized as a promising noninvasive heart rate measurement method advantageous for ubiquitous monitoring of humans in natural living conditions. Although the method is considered for application in several areas including telemedicine, sports and assisted living, its dependence on lighting conditions and camera performance is still not investigated enough. In this paper we report on research of various image acquisition aspects including the lighting spectrum, frame rate and compression. In the experimental part, we recorded five video sequences in various lighting conditions (fluorescent artificial light, dim daylight, infrared light, incandescent light bulb) using a programmable frame rate camera and a pulse oximeter as the reference. For a video sequence-based heart rate measurement we implemented a pulse detection algorithm based on the power spectral density, estimated using Welch’s technique. The results showed that lighting conditions and selected video camera settings including compression and the sampling frequency influence the heart rate detection accuracy. The average heart rate error also varies from 0.35 beats per minute (bpm) for fluorescent light to 6.6 bpm for dim daylight.
Police and various security services use video analysis when investigating criminal activity. One typical scenario is the selection of object in image sequence and search for similar objects in other images. Algorithms supporting this scenario must reconcile several seemingly contradicting factors: training and detection speed, detection reliability and learning from sparse data. In the system that we propose a combined SVM/Cascade detector is used for both speed and detection reliability. In addition, object tracking and background-foreground separation algorithm together with sample synthesis is used to collect rich training data. Experiments show that the system is effective, useful and suitable for selected tasks of police surveillance.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.