Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  vectors
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom z. 7
329-324
PL
W pracy przedstawiono nowe pojęcia i wyniki dotyczące metodologii analizy zagadnień związanych z wartościami własnymi i wektorami i własnymi macierzy rzeczywistych o współczynnikach interwałowych postaci A = { A ; AC - A < A < A C + A } , gdzie A jest miarą niepewności . Przedstawione ujęcie jest prawdopodobnie najprostszym sposobem aproksymacji w modelowaniu drgań i ich własności w systemach o parametrach niepewnych.
EN
In the paper, we are concerned with interval - oriented methodology to mode l uncertaintie s o f eigenvalues , and eigenvectors of an nx n interva l rea l matrix A = { A ;AC - A< A< AC + A }, where A i s a measure of uncertainty. Presented methodology is probably the simples t way to model an d to approximate vibration properties of systems with uncertain parameters.
2
100%
EN
Stochastic techniques have been developed over many years in a range of different fields, but have only recently been applied to the problems in machine learning. A fundamental problem in this area is the accurate evaluation of multidimensional integrals. An introduction to the theory of the stochastic optimal generating vectors has been given. A new optimized lattice sequence with a special choice of the optimal generating vector have been applied to compute multidimensional integrals up to 30-dimensions. Clearly, the progress in the area of machine learning is closely related to the progress in reliable algorithms for multidimensional integration.
3
Content available remote On the Representation of Human Motions and Distance-based Retargeting
80%
|
2021
|
tom Vol. 25
181--189
EN
Distance-based motion adaptation leads to the formulation of a dynamical Distance Geometry Problem (dynDGP) where the involved distances simultaneously represent the morphology of the animated character, as well as a possible motion. The explicit use of inter-joint distances allows us to easily verify the presence of joint contacts, which one generally wishes to preserve when adapting a given motion to characters having a different morphology. In this work, we focus our attention on suitable representations of human-like animated characters, and study the advantages (and disadvantages) in using some of them. In the initial works on distance-based motion adaptation, a 3ndimensional vector was employed for representing the positions of the n joints of the character at a given frame. Here, we investigate the use of another, very popular in computer graphics, representation that basically replaces every joint position in the three-dimensional space with a set of three sorted Euler angles. We show that the latter can in fact be useful for avoiding some of the artifacts that were observed in previous computational experiments, but we argue that this Euler-angle representation, from a motion adaptation point of view, does not seem to be the optimal one. By paying particular attention to the degrees of freedom of the studied representations, it turns out that a novel character representation, inspired by representations used in structural biology for molecules, may allow us to reduce the character degrees of freedom to their minimal value. As a result, statistical analysis on human motion databases, where the motions are given with this new representation, can potentially provide important insights on human motions. This study is an initial step towards the identification of a full set of constraints capable of ensuring that unnatural postures for humans cannot be created while tackling motion adaptation problems.
4
Content available remote Six-dimensional Landau inequalities
80%
|
|
tom Vol. 32, nr 2
413-431
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.