Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  variational splitting
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Direction-splitting implicit solvers employ the regular structure of the computational domain augmented with the splitting of the partial differential operator to deliver linear computational cost solvers for time-dependent simulations. The finite difference community originally employed this method to deliver fast solvers for PDE-based formulations. Later, this method was generalized into so-called variational splitting. The tensor product structure of basis functions over regular computational meshes allows us to employ the Kronecker product structure of the matrix and obtain linear computational cost factorization for finite element method simulations. These solvers are traditionally used for fast simulations over the structures preserving the tensor product regularity. Their applications are limited to regular problems and regular model parameters. This paper presents a generalization of the method to deal with non-regular material data in the variational splitting method. Namely, we can vary the material data with test functions to obtain a linear computational cost solver over a tensor product grid with non-regular material data. Furthermore, as described by the Maxwell equations, we show how to incorporate this method into finite element method simulations of non-stationary electromagnetic wave propagation over the human head with material data based on the three-dimensional MRI scan.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.